Volume 29 | Number 2 | Year 2016 | Article Id. IJMTT-V29P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V29P521
In this paper, we establish some new Hermite-Hadamard type inequalities for m-convex and (α,β) -convex functions of 2-variables on theco-ordinates.
convex function, (α,β) -convex function, co-ordinated convex mapping,Hermite-Hadamard inequality.
[1] R.-F. Bai, F. Qi, and B. –Y. Xi, Hermite-Hadamard type inequalities for the m - and ) – logarithmically convex functions, Filomt
27 (2013), No.1, 1-7; Available online at http:// dx.doi.org/10.2298/FIL1301001B.
[2] S. –P. Bai, S.-H. Wang, and F. Qi, Some Hermite – Hadamard type inequalities for n-time differentable ) – convex functions, J.
Inequali. Appl. 2012, 2012:267, 11 pages; available online at http://dx.doi.org/10.1186/1029-242x-2012-267.
[3] L. Chan and F. Qi, integral Inequalities of Harmite – Hadamard type for functions whose 3rd derivatives are s-convex, App. Maths. 3
(2012), No 11, 1680-1685; available online at http://dx.doi.org/10.4236/am.2012.3112232.
[4] S. S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Type inequalities and applications, RGMIA Monographs,
Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.
[5] W.-D. Jiang, D. –W. Niu, y. Hua, and F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which
are s-convex in the second sense, Analysis (Munich) 32 (2012), no 3, 209 – 220; available at
http://dx.doi.org/10.1524/analy.2012.1161.
[6] C.P. Niculescu and L. –E. Persson, Convex functions and their applications, CMD Books in Mathematics, Springer-Verlag, 2005.
[7] M.E.Ozdemir, M. Avei, and H. Kavurmaci, Hermite-Hadamard-Type inequalities via ) – Convextiy,Comput. Math.Appl. 61 (2011),
No. 9, 2614-2620; available at http://dx.doi.org/10.1016/j.camwa.2011.02.053.
[8] M. E. Ozdemir, M Avei, and E. Set, on some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett.23 (2010), No. 9,
1065-1070; available online at http://dx.doi.org/10.1016/j.camwa.2011.04.037.
[9] F. Qi, Z. –L. Wei, and Q. Yang, Generalizations and refinements of hermite-hadamard’s inequality, Rocky Mountain J. Matah. 35
(2005), no. 1, 235-251; available online at http://dx.doi.org/10.1116/rmjm/1181069779
Syed Iqbal Ahmad, ElSiddig Idriss Mohamed Idriss, "On Some New Hadamard Type Inequalities for Co-Ordinated (α,β) -Convex Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 29, no. 2, pp. 155-158, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V29P521