...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 69 | Issue 12 | Year 2023 | Article Id. IJMTT-V69I12P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I12P504

Inverse Fair Restrained Domination in the Corona of Two Graphs


Villa S. Verdad, Enrico L. Enriquez
Received Revised Accepted Published
22 Oct 2023 30 Nov 2023 11 Dec 2023 30 Dec 2023
Abstract

Let ๐บ be a connected simple graph. A dominating subset S of ๐‘‰(๐บ) is a fair dominating set in ๐บ if all the vertices not in ๐‘† are dominated by the same number of vertices from ๐‘†. A fair dominating set ๐‘† โІ ๐‘‰(๐บ) is a fair restrained dominating set if every vertex not in ๐‘† is adjacent to a vertex in ๐‘† and to a vertex in ๐‘‰(๐บ) โˆ– ๐‘†. Alternately, a fair dominating set ๐‘† โІ ๐‘‰(๐บ) is a fair restrained dominating set if ๐‘[๐‘†] = ๐‘‰(๐บ) and โŒฉ๐‘‰(๐บ) โˆ– ๐‘†โŒช is a subgraph without isolated vertices. Let ๐ท be a minimum fair restrained dominating set of ๐บ. A fair restrained dominating set ๐‘† โІ (๐‘‰(๐บ) โˆ– ๐ท) is called an inverse fair restrained dominating set of G with respect to ๐ท. The inverse fair restrained domination number of ๐บ denoted by ๐›พ๐‘“๐‘Ÿ๐‘‘ โˆ’1 (๐บ) is the minimum cardinality of an inverse fair restrained dominating set of ๐บ. An inverse fair restrained dominating set of cardinality ๐›พ๐‘“๐‘Ÿ๐‘‘ โˆ’1 (๐บ) is called ๐›พ๐‘“๐‘Ÿ๐‘‘ โˆ’1 (๐บ)-set. In this paper, the researchers investigate the concept and give some important results on inverse fair restrained dominating sets under the corona of two graphs. 

Keywords

Dominating set, Fair dominating set, Fair restrained dominating set, Inverse fair restrained dominating set, Corona of two graphs.

References

[1] E.J. Cockayne, and S.T. Hedetniemi, โ€œTowards a Theory of Domination in Graphs,โ€ Networks An International Journal, vol. 7, no. 3, pp. 247-261, 1977.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Nanet Altubar Goles et al., โ€œZ-Domination in Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 5, no. 11, pp. 7-12, 2018.
[Google Scholar]
[3] Valerie V. Fernandez, Jovita N. Ravina, and Enrico C. Enriquez, โ€œOuter-clique Domination in the Corona and Cartesian Product of Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 5, no. 8, pp 1-7, 2018.
[Google Scholar]
[4] Grace M. Estrada et al., โ€œClique, Doubly Connected Domination in the Corona and Cartesian Product of Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 6, no. 9, pp. 1-5, 2019.
[Google Scholar]
[5] Enrico L. Enriquez, and Evelyn Samper-Enriquez, โ€œConvex Secure Domination in the Join and Cartesian Product of Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 6, no. 5, pp 1-7, 2019.
[Google Scholar]
[6] Grace M. Estrada, Carmelita M. Loquias, and Enrico C. Enriquez, โ€œWeakly Convex Doubly Connected Domination in the Join and Corona of Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 5, no. 6, pp 1-6, 2018.
[Google Scholar]
[7] Jonecis A. Dayap, and Enrico L. Enriquez, โ€œOuter-Convex Domination in Graphs in the Composition and Cartesian Product of Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 6, no. 3, pp 34-42, 2019.
[Google Scholar]
[8] Daisy P. Salve, and Enrico L. Enriquez, โ€œInverse Perfect Domination in Graphs,โ€ Global Journal of Pure and Applied Mathematics, vol. 12, no. 1, pp 1-10, 2016.
[Google Scholar] [Publisher Link]
[9] Enrico L. Enriquez, and Sergio R. Canoy, โ€œSecure Convex Domination In A Graph,โ€ International Journal of Mathematical Analysis, vol. 9, no. 7, pp. 317-325, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Enrico L. Enriquez et al., โ€œSuper Connected Domination in Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 6, no. 8, pp 1-7, 2019.
[Google Scholar]
[11] Michael P. Baldado, and Enrico L. Enriquez, โ€œSuper Secure Domination in Graphs,โ€ International Journal of Mathematical Archive, vol. 8, no. 12, pp. 145-149, 2017.
[Publisher Link]
[12] Jonecis A. Dayap, and Enrico L. Enriquez, โ€œOuter-Convex Domination in Graphs,โ€ Discrete Mathematics Algorithms and Applications, vol. 12, no. 1, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Enrico L. Enriquez, and Albert D. Ngujo, โ€œClique Doubly Connected Domination in the Join and Lexicographic Product of Graphs,โ€ Discrete Mathematics, Algorithms and Applications, vol. 12, no. 5, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Yair Caro, Adriana Hansberg, and Michael Henning, โ€œFair Domination in Graphs,โ€ Discrete Mathematics, vol. 312, no. 19, pp. 2905- 2914, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[15] Enrico L. Enriquez, โ€œSuper Fair Dominating Set in Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 6, no. 2, pp 8- 14, 2019.
[Google Scholar]
[16] Enrico L. Enriquez, โ€œFair Secure Domination in Graphs,โ€ International Journal of Mathematics Trends and Technology, vol. 66, no. 2, pp. 49-57, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[17] Jan Arne Telle, and Andrzej Proskurowski, โ€œAlgorithms for Vertex Partitioning Problems on Partial-k Trees,โ€ SIAM Journal on Discrete Mathematics, vol. 10, no. 4, pp. 529-550, 1997.
[CrossRef] [Google Scholar] [Publisher Link]
[18] C.M. Loquias, and E.L. Enriquez, โ€œOn Secure Convex and Restrained Convex Domination in Graphs,โ€ International Journal of Applied Engineering Research, vol. 11, no. 7, pp. 4707-4710, 2016.
[Google Scholar] [Publisher Link]
[19] Enrico L. Enriquez, and Sergio R. Canoy, โ€œRestrained Convex Dominating Sets in the Corona and the Products of Graphs,โ€ Applied Mathematical Sciences, vol. 9, no. 78, pp. 3867-3873, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[20] Enrico L. Enriquez, โ€œSecure Restrained Convex Domination in Graphs,โ€ International Journal of Mathematical Archive, vol. 8, no. 7, pp. 1-5, 2017.
[Google Scholar] [Publisher Link]
[21] Enrico L. Enriquez, โ€œOn Restrained Clique Domination in Graphs,โ€ Journal of Global Research in Mathematical Archives, vol. 4, no. 12, pp. 73-77, 2017.
[Google Scholar]
[22] Enrico L. Enriquez, โ€œSuper Restrained Domination in the Corona of Graphs,โ€ International Journal of Latest Engineering Research and Applications, vol. 3, no. 5, pp. 1-6, 2018.
[Google Scholar] [Publisher Link]
[23] Enrico L. Enriquez, and Edward M. Kiunisala, โ€œInverse Secure Restrained Domination in the Join and Corona of Graphs,โ€ International Journal of Applied Engineering Research, vol. 11, no. 9, pp. 6676-6679, 2016.
[Google Scholar] [Publisher Link]
[24] Teodora J. Punzalan, and Enrico L. Enriquez, โ€œInverse Restrained Domination in Graphs,โ€ Global Journal of Pure and Applied Mathematics, vol. 12, no. 3, pp. 2001-2009, 2016.
[Google Scholar] [Publisher Link]
[25] Romeo C. Alota, and Enrico L. Enriquez, โ€œOn Disjoint Restrained Domination in Graphs,โ€ Global Journal of Pure and Applied Mathematics, vol. 12, no. 3, pp. 2385-2394, 2016.
[Google Scholar] [Publisher Link]
[26] Debie Honey P. Galleros, and Enrico L. Enriquez, โ€œFair Restrained Dominating Set In The Corona of Graphs,โ€ International Journal of Engineering and Management Research, vol. 10, no. 3, pp 110-114, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[27] T. Tamizh Chelvan, T. Asir, and G.S. Grace Prema, โ€œInverse Domination in Graphs,โ€ Lambert Academic Publishing, pp. 1-120, 2013.
[Google Scholar] [Publisher Link]
[28] Veerabhadrappa Kulli, and S.C. Sigarkanti, โ€œInverse Domination in Graphs,โ€ National Academy Science Letters-India, vol. 14, no. 12, pp. 473-475, 1991.
[Google Scholar] [Publisher Link]
[29] Enrico L. Enriquez, and Edward M. Kiunisala, โ€œInverse Secure Domination in Graphs,โ€ Global Journal of Pure and Applied Mathematics, vol. 12, no. 1, pp. 147-155, 2016.
[Publisher Link]
[30] Enrico L. Enriquez, and Edward M. Kiunisala, โ€œInverse Secure Domination in the Join and Corona of Graphs,โ€ Global Journal of Pure and Applied Mathematics, vol. 12, no. 2, pp. 1537-1545, 2016.
[Google Scholar]  [Publisher Link]
[31] Hanna Rachelle A. Gohil, and Enrico L. Enriquez, โ€œInverse Perfect Restrained Domination in Graphs,โ€ International Journal of Mathematics Trends and Technology, vol. 67, no. 8, pp. 164-170, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[32] Enrico L. Enriquez, โ€œInverse Fair Domination in Join and Corona of Graphs,โ€ Discrete Mathematics Algorithms and Applications, vol. 16, no. 1, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[33] Villa S. Verdad et al., โ€œInverse Fair Restrained Domination in Graphs,โ€ Journal of Research in Applied Mathematics, vol. 8, no. 6, pp. 9- 16, 2022.
[Google Scholar] [Publisher Link]
[34] Gary Chartrand, and Ping Zhang, A First Course in Graph Theory, Dover Publication, The McGraw-Hill Book Company Inc, New York, 2012.
[Google Scholar] [Publisher Link]
[35] Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson, Graph Theory 1736-1936, Oxford University Press, 1986. [Google Scholar] [Publisher Link] [36] Jennifer M. Tarr, โ€œDomination in Graphs,โ€ USF Tampa Graduate Theses and Dissertations, pp. 1-56, 2010.
[Google Scholar] [Publisher Link]

Citation :

Villa S. Verdad, Enrico L. Enriquez, "Inverse Fair Restrained Domination in the Corona of Two Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 12, pp. 27-35, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I12P504

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved