...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 70 | Issue 3 | Year 2024 | Article Id. IJMTT-V70I3P104 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I3P104

A Classical Blow up Criterion to Cauchy Problem for the Micropolar Fluid Flows


Songshang Yang
Received Revised Accepted Published
18 Jan 2024 27 Feb 2024 05 Apr 2024 30 Mar 2024
Abstract

In this paper, we discuss the cauchy problem of the viscous micropolar fluid flow model in 2D. This note obtains a classical regularity blow up criterion for the two-dimensional micropolar fluid flows. When the inital data is allowed to the suitable Sobolev space, for the life span ๐‘‡ ๐‘š๐‘Ž๐‘ฅ , it is worth noting that the result holds โˆซ โ€–๐›ป๐‘ข(๐‘ก)โ€–๐ฟโˆž๐‘‘๐‘ก = 0 ๐‘‡๐‘š๐‘Ž๐‘ฅ 0 . 

Keywords

Micropolar fluid flow, blow up criterion, suitable Sobolev space, the life span. 

References

[1] Junichi Aramaki, โ€œL p Theory for the Div-Curl System,โ€ International Journal of Mathematical Analysis, vol. 8, no. 6, pp. 259-271, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Jose L. Boldrini, Marko A. Roaas-Medar, and Enrique Fernndez-Cara, โ€œSemi-Galerkin Approximation and Strong Solutions to the Equations of the Nonhomogeneous Asymmetric Fluids,โ€ Journal of Pure and Applied Mathematics, vol. 82, no. 11, pp. 1499-1525, 2003.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Carlos Conca et al., โ€œThe Equations of Nonhomogeneous Asymmetric Fluids: An Iterative Approach,โ€ Mathematical Methods in the Applied Sciences, vol. 25, no. 15, pp. 1251-1280, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Zhi-Min Chen, and W. G. Price, โ€œDecay Estimates of Linearized Micropolar Fluid flows in R3 Space with Applications to L3-Strong Solutions,โ€ International Journal of Engineering Science, vol. 44, no. 13-14, pp. 859-873, 2006.
[CrossRef] [Google Scholar] [Publisher Link]
[5] A. Cemal Eringen, โ€œTheory of Micropolar Fluids,โ€ Journal of Mathematics and Mechanics, vol. 16, no. 1, pp. 1-18, 1966.
[Google Scholar] [Publisher Link]
[6] Giovanni P. Galdi, and Salvatore Rionero, โ€œA Note on the Existence and Uniqueness of Solutions of the Micropolar Fluid Equations,โ€ International Journal of Engineering Science, vol. 15, no. 2, pp. 105-108, 1977.
[CrossRef] [Google Scholar] [Publisher Link]
[7] D. Hoff, โ€œGlobal Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data,โ€ Journal of Differential Equations, vol. 120, no. 1, pp. 215-254, 1995.
[CrossRef] [Google Scholar] [Publisher Link]
 [8] Xiangdi Huang, โ€œOn Local Strong and Classical Solutions to the Three-dimensional Barotropic Compressible Navier-Stokes Equations with Vacuum,โ€ Science China Mathematics, vol. 64, pp. 1771-1788, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[9] Fei Jiang, and Song Jiang, โ€œAsymptotic Behaviors of Global Solutions to the Two-dimensional Non-resistive MHD Equations with Large Initial Perturbations,โ€ Advances in Mathematics, vol. 393, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Tosio Kato, โ€œRemarks on the Euler and Navier-Stokes equations in R2 ,โ€ Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 1-7, 1986.
[Google Scholar] [Publisher Link]
[11] Grzegorz Lukaszewicz, Micropolar Fluids: Theory and Applications, 1 st ed., Birkhรคuser Boston, MA, pp. 1-253, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Olga Alexsandrovna Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, 1963.
[Google Scholar] [Publisher Link]
[13] Elva E. Ortega-Torres, and Marko A. Roaas-Medar, โ€œMagneto-micropolar Fluid Motion: Global Existence of Strong Solutions,โ€ Abstract and Applied Analysis, vol. 4, pp. 1-18, 1999.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Marko A. Roaas-Medar, โ€œMagnetomicropolar Fluid Motion: Existence and Uniqueness of Strong Solution,โ€ Mathematische Nachrichten, vol. 188, no. 1, pp. 301-319, 1997.
[CrossRef] [Google Scholar] [Publisher Link]
[15] Roger Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Amsterdam, North-Holland Publishing Co. (Studies in Mathematics and Its Applications), 1977.
[Google Scholar] [Publisher Link]
[16] Norikazu Yamaguchi, โ€œExistence of Global Strong Solution to the Micropolar Fluid System in a Bounded Domain,โ€ Mathematical Methods in the Applied Sciences, vol. 28, no. 13, pp. 1507-1526, 2005.
[CrossRef] [Google Scholar] [Publisher Link]

Citation :

Songshang Yang, "A Classical Blow up Criterion to Cauchy Problem for the Micropolar Fluid Flows," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 3, pp. 23-28, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I3P104

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved