Volume 70 | Issue 3 | Year 2024 | Article Id. IJMTT-V70I3P104 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I3P104
Received | Revised | Accepted | Published |
---|---|---|---|
18 Jan 2024 | 27 Feb 2024 | 05 Apr 2024 | 30 Mar 2024 |
In this paper, we discuss the cauchy problem of the viscous micropolar fluid flow model in 2D. This note obtains
a classical regularity blow up criterion for the two-dimensional micropolar fluid flows. When the inital data is allowed to
the suitable Sobolev space, for the life span ๐
๐๐๐ฅ
, it is worth noting that the result holds โซ โ๐ป๐ข(๐ก)โ๐ฟโ๐๐ก = 0
๐๐๐๐ฅ
0
.
Micropolar fluid flow, blow up criterion, suitable Sobolev space, the life span.
[1] Junichi Aramaki, โL
p Theory for the Div-Curl System,โ International Journal of Mathematical Analysis, vol. 8, no. 6, pp. 259-271,
2014.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Jose L. Boldrini, Marko A. Roaas-Medar, and Enrique Fernndez-Cara, โSemi-Galerkin Approximation and Strong Solutions to the
Equations of the Nonhomogeneous Asymmetric Fluids,โ Journal of Pure and Applied Mathematics, vol. 82, no. 11, pp. 1499-1525,
2003.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Carlos Conca et al., โThe Equations of Nonhomogeneous Asymmetric Fluids: An Iterative Approach,โ Mathematical Methods in the
Applied Sciences, vol. 25, no. 15, pp. 1251-1280, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Zhi-Min Chen, and W. G. Price, โDecay Estimates of Linearized Micropolar Fluid flows in R3 Space with Applications to L3-Strong
Solutions,โ International Journal of Engineering Science, vol. 44, no. 13-14, pp. 859-873, 2006.
[CrossRef] [Google Scholar] [Publisher Link]
[5] A. Cemal Eringen, โTheory of Micropolar Fluids,โ Journal of Mathematics and Mechanics, vol. 16, no. 1, pp. 1-18, 1966.
[Google Scholar] [Publisher Link]
[6] Giovanni P. Galdi, and Salvatore Rionero, โA Note on the Existence and Uniqueness of Solutions of the Micropolar Fluid Equations,โ
International Journal of Engineering Science, vol. 15, no. 2, pp. 105-108, 1977.
[CrossRef] [Google Scholar] [Publisher Link]
[7] D. Hoff, โGlobal Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data,โ
Journal of Differential Equations, vol. 120, no. 1, pp. 215-254, 1995.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Xiangdi Huang, โOn Local Strong and Classical Solutions to the Three-dimensional Barotropic Compressible Navier-Stokes
Equations with Vacuum,โ Science China Mathematics, vol. 64, pp. 1771-1788, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[9] Fei Jiang, and Song Jiang, โAsymptotic Behaviors of Global Solutions to the Two-dimensional Non-resistive MHD Equations with
Large Initial Perturbations,โ Advances in Mathematics, vol. 393, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Tosio Kato, โRemarks on the Euler and Navier-Stokes equations in R2
,โ Proceedings of Symposia in Pure Mathematics, vol. 45, pp.
1-7, 1986.
[Google Scholar] [Publisher Link]
[11] Grzegorz Lukaszewicz, Micropolar Fluids: Theory and Applications, 1
st ed., Birkhรคuser Boston, MA, pp. 1-253, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Olga Alexsandrovna Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, 1963.
[Google Scholar] [Publisher Link]
[13] Elva E. Ortega-Torres, and Marko A. Roaas-Medar, โMagneto-micropolar Fluid Motion: Global Existence of Strong Solutions,โ
Abstract and Applied Analysis, vol. 4, pp. 1-18, 1999.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Marko A. Roaas-Medar, โMagnetomicropolar Fluid Motion: Existence and Uniqueness of Strong Solution,โ Mathematische
Nachrichten, vol. 188, no. 1, pp. 301-319, 1997.
[CrossRef] [Google Scholar] [Publisher Link]
[15] Roger Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Amsterdam, North-Holland Publishing Co. (Studies in
Mathematics and Its Applications), 1977.
[Google Scholar] [Publisher Link]
[16] Norikazu Yamaguchi, โExistence of Global Strong Solution to the Micropolar Fluid System in a Bounded Domain,โ Mathematical
Methods in the Applied Sciences, vol. 28, no. 13, pp. 1507-1526, 2005.
[CrossRef] [Google Scholar] [Publisher Link]
Songshang Yang, "A Classical Blow up Criterion to Cauchy Problem for the Micropolar Fluid Flows," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 3, pp. 23-28, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I3P104