Volume 70 | Issue 5 | Year 2024 | Article Id. IJMTT-V70I5P104 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I5P104
| Received | Revised | Accepted | Published | 
|---|---|---|---|
| 26 Mar 2024 | 14 Jun 2024 | 15 May 2024 | 14 Jun 2024 | 
Dao Viet Cuong, Doan Thanh Son, "An Invertible Subspace in Clifford Algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 5, pp. 19-27, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I5P104
The goal of this paper is to find a subspace in the Cliiford algebra in which every non-zero element has an invertible 
element. The paper begins with some basic knowledge in the classical Clifford algebra, then shows that not all non-zero elements 
are invertible through some specific examples. The construction of the invertible subspace is presented in the third part of the 
paper.
Clifford algebras, Hyper complex analysis, Holomorphic function, Invertible subspace.
[1] V. Iftimie, “Fonctions Hypercomplexes,” Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of 
Romania, vol. 9, no. 4, pp. 279-332, 1965. 
[Google Scholar] [Publisher Link]
[2] V. Iftimie, “Moisil-Theodorescu Type Operator,” Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic 
of Romania, vol. 10, no. 58, pp. 271-305, 1966. 
[Google Scholar] [Publisher Link]
[3] Richard Delanghe, “On Regular - Analytic Functions with Values in a Clifford Algebra,” Mathematical Annals, vol. 185, pp. 91 – 111, 
1970. 
[CrossRef] [Google Scholar] [Publisher Link]
[4] Richard Delanghe, “On the Singularities of Functions with values in a Clifford Algebra,” Mathematical Annals, vol. 196, pp. 293-319, 
1972. 
[CrossRef] [Google Scholar] [Publisher Link]
[5] R. Delanghe, and F. Brackx, “Hypercomplex Function Theory and Hilbert Modules with Reproducing Kernels,” Proceedings of the 
London Mathematical Society, vol. s3-37, no. 3, pp. 545-576, 1978. 
[CrossRef] [Google Scholar] [Publisher Link]
[6] N. Theodorescu, “The Areolar Derivative and Its Applications to Mathematical Physics,” Thèses, Paris, 1931. 
[Google Scholar] [Publisher Link]
[7] N. Theodorescu, “Spatial Derivatives and Extension of Fundamental Differential Operators: GRD, DIV and ROT of Field Theory,” 
Mathematical Bulletin of the Society of Mathematical and Physical Sciences of the Romanian People's Republic, vol. 3, no. 51, pp. 363-
383, 1959. 
[Google Scholar] [Publisher Link]
[8] N. Theodorescu, “La dérivée aréolaire,” Ann Roumains Math – Cahier 3, Bucarest, 1936. 
[9] A. Angelescu, Sur une Fommule de M. D. Pompéiu, Mathématica. Cluj. 1, 1929. 
[10] G.C. Moisil, “On M. Dirac’s Systems of Equations, of the Elliptical Type,” Proceedings of the Academy of Sciences Series, Paris, pp. 
1292-1293, 1930.
[Google Scholar] [Publisher Link]
[11] Grigore Constantin Moisil, “On a class of systems of partial differential equations in Mathematical physics,” Royal Court F. Gobl 
Son,1931. 
[Google Scholar]
 [12] Dy. Huan Le, “Nekotorie Osnovnie Teoremi O Golomorfnen Vectore,” Sci. Rec., 6, 2, 2, p. 53, 1958. 
 [13] Mariana Neldelcu Coroi, “An Application of the Spatial Derivative to the Equations of Elasticity in Space,” Romanian Journal of Pure 
and Applied Mathematics, vol. 5, pp. 3-4, 1960. 
[Google Scholar]
 [14] Walter Nef, “The Insignificant Singularities of the Regular Functions of a Quaternion Variable,” Commentarii Mathematici Helvetici, vol. 
16, pp. 284-304, 1943. 
[CrossRef] [Google Scholar] [Publisher Link]
[15] Luigi Sobréro, “Algebra of Hypercomplex Functions and Its Applications to the Mathematical Theory of Elasticity,” Royal Academy of 
Italy, 1934. 
[Google Scholar]
[16] R. Fueter, “Die Singularitaten der Eindeutigen Reguraren Funktionen Einer Quaternionvariablen,” Commentarii Mathematici Helvetici, 
vol. 9, p. 320, 1936.
[17] Rud Fueter, “On the Analytical Representation of Regular Functions of a Quaternion Variable,” Commentarii Mathematici Helvetici, vol. 
8, pp. 371-378, 1935.
[CrossRef] [Google Scholar] [Publisher Link]
[18] Bernd Goldschmidt, “Regularity Properties of Generalized Analytic Vectors in ℝn
,” Mathematical News, vol. 103, no. 1, pp. 245- 254, 
1981. 
[CrossRef] [Google Scholar] [Publisher Link]
[19] Bernd Goldschmidt, “Existence and Representation of Solutions of a Class of Elliptic Systems of Partial Differential Equations of First 
Order in the Space,” Commentarii Mathematici Helvetici, vol. 108, no. 1, pp. 159-166, 1982.
[CrossRef] [Google Scholar] [Publisher Link]
[20] Bernd Goldschmidt, “A Cauchy Integral Formula for a Class of Elliptic Systems of Partial Differential Equations of First Order in the 
Space,” Mathematical News, vol. 108, no. 1, pp. 167-178, 1982.
[CrossRef] [Google Scholar] [Publisher Link]
[21] R.P. Gilbert, and G.N. Hile, “Hilbert Function Modules with Reproducing Kernels,” Nonlinear Analysis: Theory, Method and 
Applications, vol. 1, no. 2, pp. 135- 150, 1977.
[CrossRef] [Google Scholar] [Publisher Link]
[22] R.P. Gilbert, and Gerald Hile, “Hypercomplex Function Theory in the Sense of L. BERS,” Mathematical News, vol. 72, no. 1, pp. 187-
200, 1976.
[CrossRef] [Google Scholar] [Publisher Link]
[23] David Colton, “Bergman Operators for Elliptic Equations in Four Independent Variables,” SIAM Journal on Mathematics Analysis, vol. 
3, no. 3, 1972.
[CrossRef] [Google Scholar] [Publisher Link]
[24] David Colton, “Integral Operators for Elliptic Equations in Three Independent Variables I, II,” Applicable Analysis, vol. 4, no. 1, pp. 77-
95, 1974.
[CrossRef] [Google Scholar] [Publisher Link]
[25] Fred Brackx, Richard Delanghe, and Frank Sommen, Clifford Analysis, Pitman Advanced Publishing Program, 1982.
[Publisher Link]
[26] Wolfgang Tutschke, “Classical and Modern Methods of Complex Analysis,” Complex Analysis, pp. 15-58, 1983.
[Google Scholar]
[27] Wolfgang Tutschke, “Reduction of the Problem of Linear Conjugation for First Order Nonlinear Elliptic Systems in the Plane to an 
Analogous Problem for Holomorphic Functions,” Analytic Functions Kozubnik 1979, pp. 446-455, 2006.
[CrossRef] [Google Scholar] [Publisher Link]