...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 70 | Issue 7 | Year 2024 | Article Id. IJMTT-V70I7P103 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I7P103

Orthogonal (๐œŽ, ๐œ)-Derivations on Semiprime ฮ“ โ€“ Semirings


V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Chennakesavulu
Received Revised Accepted Published
20 May 2024 27 Jun 2024 13 Jul 2024 31 Jul 2024
Abstract

Assume S is a semiprime ฮ“-semiring and d: Sโ†’S is an additive mapping that obeys ๐‘‘(๐‘ข๐›ผ๐‘ฃ) = ๐‘‘(๐‘ข)๐›ผ๐œŽ(๐‘ฃ)+ ๐œ(๐‘ข)๐›ผ๐‘‘(๐‘ฃ) for all u , ๐‘ฃ โˆˆ ๐‘†, ๐›ผ โˆˆ ๐›ค , then d is termed as (๐œŽ, ๐œ)- derivation on S. This paper introduces orthogonal (๐œŽ, ๐œ)- derivations within semiprime ฮ“-semirings and provides several characterizations of these semirings. It also establishes the criteria under which two (๐œŽ, ๐œ)-derivations can be deemed orthogonal.

Keywords

(๐ˆ, ๐‰)-derivation, Orthogonal (๐ˆ, ๐‰)-derivation, ๐œž โ€“semiring.

References

[1] Abdulrahman H. Majeed, and Shahed Ali Hamil, โ€œOrthogonal Generalized Derivations on ฮ“-Semirings,โ€ Journal of Physics: Conference Series: Imam Al-Kadhum International Conference for Modern Applications of Information and Communication Technology (MAICT), Baghdad, Iraq, vol. 1530, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[2] B. Venkateswarlu, M. Murali Krishna Rao, and Y. Adi Narayana, โ€œOrthogonal Derivations on ฮ“ โ€“ Semirings,โ€ Bulletin of the International Mathematical Virtual Institute, vol. 8, no. 3, pp. 543-552, 2018.
[Google Scholar]
[3] B. Venkateswarlu, M. Murali Krishna Rao, and Y. Adi Narayana, โ€œOrthogonal Reverse Derivations on Semiprime ฮ“-Semirings,โ€ Mathematical Sciences and Applications E-Notes, vol. 7, no. 1, pp. 71-77, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[4] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, โ€œOrthogonal Symmetric Reverse Bi-(๐œŽ, ๐œ)- Derivations in Semiprime Rings,โ€ Tuijin Jishu/Journal of Propulsion Technology, vol. 45, no. 1, pp. 5133-5138, 2024.
[Google Scholar] [Publisher Link]
[5] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, โ€œOrthogonality of Generalized Reverse(๐œŽ, ๐œ)- Derivations in Semiprime ๐œžโ€“Rings,โ€ Journal of Nonlinear Analysis and Optimization, vol. 15, no. 4, pp. 20-28, 2024.
[Google Scholar] [Publisher Link]
 [6] C. Jaya Subba Reddy, V.S.V. Krishna Murty, and K. Chennakesavulu, โ€œOrthogonal Generalized Symmetric Reverse Bi-(๐œŽ, ๐œ)- Derivations in Semi Prime Rings,โ€ Communications on Applied Nonlinear Analysis, vol. 31, no. 3s, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
 [7] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, โ€œOrthogonal generalized Symmetric Reverse Biderivations in Semiprime Rings,โ€ Journal of Applied and Pure Mathematics, vol. 6, no. 3-4, pp. 155-165, 2024, in press.
[Publisher Link]
[8] Harry S. Vandiver, โ€œNote on a Simple Type of Algebra in Which the Cancellation Law of Addition does not Hold,โ€ Bulletin of the American Mathematical Society, vol. 40, no. 12, pp. 914-920, 1934.
[Google Scholar] [Publisher Link]
[9] Kalyan Kumar Dey, Akhil Chandra Paul, and Isamiddin S. Rakhimov, โ€œOrthogonal Generalized Derivations in Semiprime Gamma Near-Rings,โ€ International Journal of Algebra, vol. 6, no. 23, pp. 1127-1134, 2012.
[Google Scholar] [Publisher Link]
[10] M.K. Sen, โ€œOn ฮ“-Semigroups,โ€ Proceeding of International Conference on Algebra and its Applications, New Delhi, pp.301- 308, 1981.
[Google Scholar]
[11] M.A. Javed, M. Aslam, and M. Hussain, โ€œOn Derivations of Prime ฮ“-Semirings,โ€ Southeast Asian Bulletin of Mathematics, vol. 37, no. 6, 2013.
[Google Scholar]
 [12] M. Murali Krishna Rao, โ€œ๐šช-Semirings-I,โ€ Southeast Asian Bulletin of Mathematics, vol. 19, no. 1, pp. 49-54, 1995.
[Google Scholar] [Publisher Link]
[13] M. Murali Krishna Rao, โ€œ๐šช-Semirings-II,โ€ Southeast Asian Bulletin of Mathematics, vol. 21, no. 3, pp. 281-287, 1997.
[Publisher Link]
[14] Nobuo Nobusawa, โ€œOn a Generalization of the Ring Theory,โ€ Osaka Journal of Mathematics, vol. 1, no. 1, pp. 81-89, 1964.
[Google Scholar] [Publisher Link]
[15] N. Suganthameena, and M. Chandramouleeswaran, โ€œOrthogonal Derivations on Semirings,โ€ International Journal of Contemporary Mathematical Science, vol. 9, no. 13, pp. 645-651, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[16] Shuliang Huang, โ€œOn Orthogonal Generalized (ฯƒ, ฯ„)-Derivations of Semiprime Near-Rings,โ€ Kyungpook Mathematical Journal, vol. 50, no. 3, pp. 379-387, 2010.
[CrossRef] [Google Scholar] [Publisher Link]

Citation :

V.S.V. Krishna Murty, C. Jaya Subba Reddy, K. Chennakesavulu, "Orthogonal (๐œŽ, ๐œ)-Derivations on Semiprime ฮ“ โ€“ Semirings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 7, pp. 13-17, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I7P103

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved