Volume 71 | Issue 10 | Year 2025 | Article Id. IJMTT-V71I10P113 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I10P113
| Received | Revised | Accepted | Published |
|---|---|---|---|
| 27 Aug 2025 | 01 Oct 2025 | 20 Oct 2025 | 30 Oct 2025 |
Jayadev Nath, Chet Raj Bhatta, "Weighted Inequalities and Estimates of Operators in the Weighted Setting," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 10, pp. 87-95, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I10P113
[1] Andrei K. Lerner, “On an
Estimate of Calderón-Zygmund Operators by Dyadic Positive Operators,” Journal’d Analyse Mathematique, vol.
121, pp. 141-161, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Andrei K. Lerner, “A Simple
Proof of the A2 Conjecture,” International
Mathematics Research Notices, vol. 14, pp. 3159-3170, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Andrei K. Lerner et al.,
“New Maximal Functions and Multiple Weights for the Multilinear
Calderón-Zygmund Theory,” Advances in
Mathematics, vol. 220, no.4, pp. 1222-1264, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Andrei K. Lerner, “On
Pointwise Estimates Involving Sparse Operators,” New York Journal of Mathematics, vol. 22, pp. 341-349, 2016.
[Google Scholar] [Publisher
Link]
[5] Benjamin Muckenhoupt,
“Weighted Norm Inequalities for the Hardy Maximal Function,” Transactions of the American Mathematical
Society, vol.165, pp. 207-226, 1972.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Daewon Chung, “Sharp
Estimates for the Commutators of the Hilbert, Riesz Transforms and the
Beurling-Ahlfors Operator on Weighted Lebesgue Spaces,” Indiana University Mathematics Journal, vol. 60, no. 5, pp.
1543-1588, 2011.
[Google Scholar] [Publisher
Link]
[7] David Cruz-Uribe, “Matrix
Weights, Singular Integrals, Jones Factorization and Rubio de Francia
Extrapolation,” pp. 1-15, 2023.
[Google Scholar] [Publisher Link]
[8] Cruz-Uribe, “Extrapolation
and Factorization,” arXiv:1706.02620,
pp. 1-48, 2017.
[CrossRef] [Google Scholar] [Publisher
Link]
[9] David V. Cruz-Uribe, José
Maria Martell, and Carlos Pérez, Weights,
Extrapolation and Theory of Rubio de Francia, Springer Science &
Business Media, vol. 215, pp. 17-26, 2011.
[Google Scholar] [Publisher Link]
[10] Diego Maldonado, and
Virginia Naibo, “Weighted Norm Inequalities for Paraproducts and Bilinear
Pseudodifferential Operators with Mild Regularity,” Journal of Fourier Analysis and Applications, vol. 15, pp. 218-261,
2009.
[CrossRef] [Google Scholar] [Publisher Link]
[11] E.M. Dyn'kin, and B.P.
Osilenker, “Weighted Estimates of Singular Integrals and their Applications,” Journal of Soviet Mathematics, vol. 30,
pp. 2094-2154, 1985.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Guozhen Lu, and Pu Zhang,
“Multilinear Calderón-Zygmund Operators with Kernels of Dini’s type and
Applications,” Nonlinear Analysis:Theory,
Methods & Applications, vol. 107, pp. 92-117, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Henry Helson, and Gabor
Szegö, “A Problem in Prediction Theory,” Annalidi
Mathematica Pure edApplicata, vol. 51, no. 1, pp. 107-138, 1960.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Ishwari Kunwar, “Multilinear Dyadic Operators and their
Cmmutators,” Ph.D Thesis, Annalidell’Universitàdi Ferrara, 2018.
[Google Scholar] [Publisher Link]
[15] Javier Duoandikoetxea, Fourier Analysis, Graduate Studies in
Mathematics, Providence, Rhode Island, vol. 29, 2001.
[Google Scholar] [Publisher Link]
[16] Javier Duoandikoetxea,
“Extrapolation of Weights Revisited: New Proofs and Sharp Bounds,” Journal of Functional Analysis, vol.
260, no. 6, pp. 1886-1901, 2011.
[CrossRef] [Google Scholar] [Publisher Link]
[17] José Luis Rubio De Francia,
“Factorization and Extrapolation of Weights,” Bulletin of the American Mathematical Society, vol. 7, no. 2, pp.
393-395, 1982.
[Google Scholar] [Publisher Link]
[18] José Luis Rubio De Francia,
“Factorization Theory and Ap Weights,” American Journal of Mathematics, vol. 106, no. 3, pp. 533-547,
1984.
[Google Scholar] [Publisher
Link]
[19] José García-Cuerva, “An
Extrapolation Theorem in the Theory of Ap Weights,” Proceedings of the American Mathematical
Society, vol. 87, no. 3, pp. 422-426, 1983.
[CrossRef] [Google Scholar] [Publisher Link]
[20] J. Gracía-Cuerva, and J.L.
Rubio de Francia, Weighted Norm
Inequalities and Related Topics, Amsterdam, Netherland, North-Holland
Publishing Company, 1985.
[Google Scholar] [Publisher Link]
[21] Janine Wittwer, “A Sharp
Estimate on the Norm of the Martingale Transform,” Mathematical Research Letters, vol. 7, pp. 1-12, 2000.
[CrossRef] [Google Scholar] [Publisher Link]
[22] Janine Wittwer, “A Sharp
Estimate on the Norm of the Continuous Square Function,” Proceedings of the American Mathematical Society, vol. 130, no.8,
pp. 2335-2342, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[23] José M. Conde-Alonso, and
Guillermo Rey, “A Pointwise Estimate for Positive Dyadic Shifts and Some
Applications,” Mathematische Annalen,
vol. 365, pp. 1111-1135, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Kangwei Li, Kabe Moen, and
Wenchang Sun, “The Sharp Weighted Bound for Multilinear Maximal Functions and
Calderón-Zygmund Operators,” Journal of
Fourier Analysis and Applications, vol. 20, no. 4, pp. 751-765, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[25] Kôzô Yabuta,
“Generalizations of Calderón-Zygmund Operators,” Studia Mathematica, vol. 82, no. 1, pp. 17-31, 1985.
[Google Scholar] [Publisher Link]
[26] Loukas Grafakos, Modern Fourier Analysis, 2nd
ed., New York: Springer, vol. 250, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[27] C. Pereyra, New Trends in Applied Harmonic Analysis,
Springer Nature, vol. 2, pp. 159-239, 2018.
[Publisher
Link]
[28] María Cristina Pereyra,
“Haar Multipliers Meet Bellman Functions,” Revista
Mathemática Lberoamericana, vol. 25, no. 3, pp. 799-840, 2009.
[CrossRef] [Google Scholar] [Publisher
Link]
[29] Marcin Bownik, and David
Cruz-Uribe, “Extrapolation and Factorization of Matrix Weights,” arXiv:2210.09443, pp. 1-60, 2022.
[CrossRef] [Google Scholar] [Publisher
Link]
[30] Michael T. Lacey, “An
Elementary Proof of the A2 Bound,” Israel Journal of Mathematics, vol. 217, pp. 181-195, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[31] Nets Hawk Katz, and María
Cristina Pereyra, Haar Multipliers,
Paraproducts, and Weighted Inequalities, Analysis of Divergence, pp.
145-170, 1999.
[CrossRef] [Google Scholar] [Publisher Link]
[32] Oleksandra V. Beznosova, “Bellman Function, Paraproducts, Haar
multipliers, and Weighted Inequalities,” PhD Thesis, University of New
Mexico, 2008.
[Google Scholar] [Publisher Link]
[33] Oleksandra V. Beznosova,
“Linear Bound for the Dyadic Paraproduct on Weighted Lebesgue Space L2(w),”
Journal of Functional Analysis, vol.
255, no.4, 994-1007, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[34] Oliver Dragičević et al.,
“Extrapolation and Sharp Norm Estimates for Classical Operators on Weighted
Lebesgue Spaces,” Publications
Mathemàtiques, vol. 49, no. 1, pp. 73-91, 2004.
[Google Scholar] [Publisher
Link]
[35] Petet W. Jones,
“Factorization of Ap Weights,” Annals
of Mathematics, vol. 111, no. 3, pp. 511-530, 1980.
[CrossRef] [Google Scholar] [Publisher
Link]
[36] R.R. Coifman, and R.
Rochberg, “Another Characterization of BMO,” Proceedings of the Mathematical Society, vol. 79, no. 2, pp.
249-254, 1980.
[CrossRef] [Google Scholar] [Publisher Link]
[37] Richard Hunt, Benjamin
Muckenhoupt, and Richard Wheeden, “Weighted Norm Inequalities for the Conjugate
Function and Hilbert Transform,” Transactions
of American Mathematical Society, vol. 176, pp. 227-251, 1973.
[CrossRef] [Google Scholar] [Publisher Link]
[38] R. Coifman, and C.
Fefferman, “Weighted Norm Inequalities for Maximal Function and Singular
Integrals,” Studia Mathematica, vol.
51, no. 3, pp. 241-250, 1974.
[Google Scholar] [Publisher Link]
[39] Stephen M. Buckley,
“Estimates for Operator Norms on Weighted Spaces and Reverse Jensen
Inequalities,” Transactions of the
American Mathematical Society, vol. 340, no. 1, pp. 253-272, 1993.
[CrossRef] [Google Scholar] [Publisher Link]
[40] S. Hukovic, S. Treil, and
A. Volberg, “Operator Theory Advances and
Applications,” V. P. Havin and N. K. Nikolkski, Ed., Basel, Switzerland,
Bikhäuser, vol. 113, pp. 97-113, 2000.
[Google Scholar]
[41] Stefanie Petermichl,
Alexander Volberg, “Heating of the Ahlfors-Beurling Operator: Weakly
Quasiregular Maps on the Plane are Quasiregular,” Duke Mathematical Journal, vol. 112, no. 2, pp. 281-305, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[42] S. Petermichl, “The Sharp
Bound for the Hilbert Transform on Weighted Lebesgue Spaces in Terms of the
Classical Ap Characteristic,” American
Journal of Mathematics, vol. 129, no. 5, pp. 1355-1375, 2007.
[Google Scholar] [Publisher
Link]
[43] Stefanie Petermichl, “The
Sharp Weighted Bound for the Riesz Transforms,” Proceedings of the American Mathematical Society, vol. 136, no. 4,
pp. 1237-1249, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[44] Tuomas P. Hytönen, Luz
Roncal, and Olli Tapiola, “Quantitative Weighted Estimates for Rough
Homogeneous Singular Integrals,” Israel
Journal of Mathematics, vol. 218, no. 1, pp. 133-164, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[45] Tuomas P. Hytönen, “The
Sharp Weighted Bound for General Calderón-Zygmund Operators,” Annals of Mathematics, vol. 175, no. 3,
pp. 1473-1506, 2012.
[Google Scholar] [Publisher
Link]
[46] Tuomas Hytönen, “The A2
Theorem: Remarks and Complements,” American
Mathematical Society, vol. 612, pp. 91-106, 2014.
[Google Scholar] [Publisher Link]
[47] Vasily Vasyunin, and
Alexander Volberg, The Bellman Function
Technique in Harmonic Analysis, Cambridge: Cambridge University Press, vol.
186, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[48] Wendolín Damián, Andrei K.
Lerner, and Carlos Pérez, “Sharp Weighted Bounds for Mul-tilinear Maximal
Functions and Calderón-Zygmund Operators,” Journal
of Fourier Analysis and Applications, vol. 21, no. 1, pp. 161-181, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[49] Xia Han, and Hua Wang,
“Multilinear θ−Type Calderón-Zygmund Operators and Commutators on Products of
Morrey Spaces,” arXiv:2302.05570, pp.
1-40, 2013.
[CrossRef] [Publisher
Link]
[50] Xia Han, and Hua Wang,
“Multilinear θ−Type Calderón-Zygmund Operators and Commutators on Products of
Weighted Amalgam Spaces,” Journal of
Mathematical Inequalities, vol. 18, no. 4, pp. 1435-1487, 2024.
[CrossRef] [Publisher Link]