...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 10 | Year 2025 | Article Id. IJMTT-V71I10P113 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I10P113

Weighted Inequalities and Estimates of Operators in the Weighted Setting


Jayadev Nath, Chet Raj Bhatta
Received Revised Accepted Published
27 Aug 2025 01 Oct 2025 20 Oct 2025 30 Oct 2025
Citation :

Jayadev Nath, Chet Raj Bhatta, "Weighted Inequalities and Estimates of Operators in the Weighted Setting," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 10, pp. 87-95, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I10P113

Abstract
A historical development and scope of the 𝐴𝑝 The condition of the scalar weight function are reviewed in the paper. Moreover, the dependence of the weighted norm, ‖𝑇‖𝐿2(𝑤) of some classical operators T on the Muckenhoupt characteristic constant of the weight, [𝑤]𝐴2 , qualitatively and quantitatively, and its chronology, as well as linear and multilinear estimates of some fundamental operators, and some important tools used are also studied.
Keywords
𝐴2-Conjecture, 𝐴𝑝-Characteristic Constant, Jones Factorization Theorem, Weight, Weighted Inequality.
References

[1] Andrei K. Lerner, “On an Estimate of Calderón-Zygmund Operators by Dyadic Positive Operators,” Journal’d Analyse Mathematique, vol. 121, pp. 141-161, 2012.
[
CrossRef] [Google Scholar] [Publisher Link]

[2] Andrei K. Lerner, “A Simple Proof of the A2 Conjecture,” International Mathematics Research Notices, vol. 14, pp. 3159-3170, 2013.
[
CrossRef] [Google Scholar] [Publisher Link]

[3] Andrei K. Lerner et al., “New Maximal Functions and Multiple Weights for the Multilinear Calderón-Zygmund Theory,” Advances in Mathematics, vol. 220, no.4, pp. 1222-1264, 2009.
[
CrossRef] [Google Scholar] [Publisher Link]

[4] Andrei K. Lerner, “On Pointwise Estimates Involving Sparse Operators,” New York Journal of Mathematics, vol. 22, pp. 341-349, 2016.
 [
Google Scholar] [Publisher Link]

[5] Benjamin Muckenhoupt, “Weighted Norm Inequalities for the Hardy Maximal Function,” Transactions of the American Mathematical Society, vol.165, pp. 207-226, 1972.
[
CrossRef] [Google Scholar] [Publisher Link]

[6] Daewon Chung, “Sharp Estimates for the Commutators of the Hilbert, Riesz Transforms and the Beurling-Ahlfors Operator on Weighted Lebesgue Spaces,” Indiana University Mathematics Journal, vol. 60, no. 5, pp. 1543-1588, 2011.
[
Google Scholar] [Publisher Link]

[7] David Cruz-Uribe, “Matrix Weights, Singular Integrals, Jones Factorization and Rubio de Francia Extrapolation,” pp. 1-15, 2023.
[
Google Scholar] [Publisher Link]

[8] Cruz-Uribe, “Extrapolation and Factorization,” arXiv:1706.02620, pp. 1-48, 2017.
[
CrossRef] [Google Scholar] [Publisher Link]

[9] David V. Cruz-Uribe, José Maria Martell, and Carlos Pérez, Weights, Extrapolation and Theory of Rubio de Francia, Springer Science & Business Media, vol. 215, pp. 17-26, 2011.
[
Google Scholar] [Publisher Link]

[10] Diego Maldonado, and Virginia Naibo, “Weighted Norm Inequalities for Paraproducts and Bilinear Pseudodifferential Operators with Mild Regularity,” Journal of Fourier Analysis and Applications, vol. 15, pp. 218-261, 2009.
[
CrossRef] [Google Scholar] [Publisher Link]

[11] E.M. Dyn'kin, and B.P. Osilenker, “Weighted Estimates of Singular Integrals and their Applications,” Journal of Soviet Mathematics, vol. 30, pp. 2094-2154, 1985.
[
CrossRef] [Google Scholar] [Publisher Link]

[12] Guozhen Lu, and Pu Zhang, “Multilinear Calderón-Zygmund Operators with Kernels of Dini’s type and Applications,” Nonlinear Analysis:Theory, Methods & Applications, vol. 107, pp. 92-117, 2014.
[
CrossRef] [Google Scholar] [Publisher Link]

[13] Henry Helson, and Gabor Szegö, “A Problem in Prediction Theory,” Annalidi Mathematica Pure edApplicata, vol. 51, no. 1, pp. 107-138, 1960.
[
CrossRef] [Google Scholar] [Publisher Link]

[14] Ishwari Kunwar, “Multilinear Dyadic Operators and their Cmmutators,” Ph.D Thesis, Annalidell’Universitàdi Ferrara, 2018.
[
Google Scholar] [Publisher Link]

[15] Javier Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics, Providence, Rhode Island, vol. 29, 2001.
[
Google Scholar] [Publisher Link]

[16] Javier Duoandikoetxea, “Extrapolation of Weights Revisited: New Proofs and Sharp Bounds,” Journal of Functional Analysis, vol. 260, no. 6, pp. 1886-1901, 2011.
[
CrossRef] [Google Scholar] [Publisher Link]

[17] José Luis Rubio De Francia, “Factorization and Extrapolation of Weights,” Bulletin of the American Mathematical Society, vol. 7, no. 2, pp. 393-395, 1982.
[
Google Scholar] [Publisher Link]

[18] José Luis Rubio De Francia, “Factorization Theory and Ap Weights,” American Journal of Mathematics, vol. 106, no. 3, pp. 533-547, 1984.
[
Google Scholar] [Publisher Link]

[19] José García-Cuerva, “An Extrapolation Theorem in the Theory of Ap Weights,” Proceedings of the American Mathematical Society, vol. 87, no. 3, pp. 422-426, 1983.
[
CrossRef] [Google Scholar] [Publisher Link]

[20] J. Gracía-Cuerva, and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Amsterdam, Netherland, North-Holland Publishing Company, 1985.
 [
Google Scholar] [Publisher Link]

[21] Janine Wittwer, “A Sharp Estimate on the Norm of the Martingale Transform,” Mathematical Research Letters, vol. 7, pp. 1-12, 2000.
[
CrossRef] [Google Scholar] [Publisher Link]

[22] Janine Wittwer, “A Sharp Estimate on the Norm of the Continuous Square Function,” Proceedings of the American Mathematical Society, vol. 130, no.8, pp. 2335-2342, 2002.
[
CrossRef] [Google Scholar] [Publisher Link]

[23] José M. Conde-Alonso, and Guillermo Rey, “A Pointwise Estimate for Positive Dyadic Shifts and Some Applications,” Mathematische Annalen, vol. 365, pp. 1111-1135, 2016.
[
CrossRef] [Google Scholar] [Publisher Link]

[24] Kangwei Li, Kabe Moen, and Wenchang Sun, “The Sharp Weighted Bound for Multilinear Maximal Functions and Calderón-Zygmund Operators,” Journal of Fourier Analysis and Applications, vol. 20, no. 4, pp. 751-765, 2014.
[
CrossRef] [Google Scholar] [Publisher Link]

[25] Kôzô Yabuta, “Generalizations of Calderón-Zygmund Operators,” Studia Mathematica, vol. 82, no. 1, pp. 17-31, 1985.
[
Google Scholar] [Publisher Link]

[26] Loukas Grafakos, Modern Fourier Analysis, 2nd ed., New York: Springer, vol. 250, 2009.
[
CrossRef] [Google Scholar] [Publisher Link]

[27] C. Pereyra, New Trends in Applied Harmonic Analysis, Springer Nature, vol. 2, pp. 159-239, 2018.
[
Publisher Link]

[28] María Cristina Pereyra, “Haar Multipliers Meet Bellman Functions,” Revista Mathemática Lberoamericana, vol. 25, no. 3, pp. 799-840, 2009.
[
CrossRef] [Google Scholar] [Publisher Link]

[29] Marcin Bownik, and David Cruz-Uribe, “Extrapolation and Factorization of Matrix Weights,” arXiv:2210.09443, pp. 1-60, 2022.
[
CrossRef] [Google Scholar] [Publisher Link]

[30] Michael T. Lacey, “An Elementary Proof of the A2 Bound,” Israel Journal of Mathematics, vol. 217, pp. 181-195, 2017.
[
CrossRef] [Google Scholar] [Publisher Link]

[31] Nets Hawk Katz, and María Cristina Pereyra, Haar Multipliers, Paraproducts, and Weighted Inequalities, Analysis of Divergence, pp. 145-170, 1999.
[
CrossRef] [Google Scholar] [Publisher Link]

[32] Oleksandra V. Beznosova, “Bellman Function, Paraproducts, Haar multipliers, and Weighted Inequalities,” PhD Thesis, University of New Mexico, 2008.
[
Google Scholar] [Publisher Link]

[33] Oleksandra V. Beznosova, “Linear Bound for the Dyadic Paraproduct on Weighted Lebesgue Space L2(w),” Journal of Functional Analysis, vol. 255, no.4, 994-1007, 2008.
[
CrossRef] [Google Scholar] [Publisher Link]

[34] Oliver Dragičević et al., “Extrapolation and Sharp Norm Estimates for Classical Operators on Weighted Lebesgue Spaces,” Publications Mathemàtiques, vol. 49, no. 1, pp. 73-91, 2004.
[
Google Scholar] [Publisher Link]

[35] Petet W. Jones, “Factorization of Ap Weights,” Annals of Mathematics, vol. 111, no. 3, pp. 511-530, 1980.
[
CrossRef] [Google Scholar] [Publisher Link]

[36] R.R. Coifman, and R. Rochberg, “Another Characterization of BMO,” Proceedings of the Mathematical Society, vol. 79, no. 2, pp. 249-254, 1980.
[
CrossRef] [Google Scholar] [Publisher Link]

[37] Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, “Weighted Norm Inequalities for the Conjugate Function and Hilbert Transform,” Transactions of American Mathematical Society, vol. 176, pp. 227-251, 1973.
[
CrossRef] [Google Scholar] [Publisher Link]

[38] R. Coifman, and C. Fefferman, “Weighted Norm Inequalities for Maximal Function and Singular Integrals,” Studia Mathematica, vol. 51, no. 3, pp. 241-250, 1974.
[
Google Scholar] [Publisher Link]

[39] Stephen M. Buckley, “Estimates for Operator Norms on Weighted Spaces and Reverse Jensen Inequalities,” Transactions of the American Mathematical Society, vol. 340, no. 1, pp. 253-272, 1993.
[
CrossRef] [Google Scholar] [Publisher Link]

[40] S. Hukovic, S. Treil, and A. Volberg, “Operator Theory Advances and Applications,” V. P. Havin and N. K. Nikolkski, Ed., Basel, Switzerland, Bikhäuser, vol. 113, pp. 97-113, 2000.
[
Google Scholar]

[41] Stefanie Petermichl, Alexander Volberg, “Heating of the Ahlfors-Beurling Operator: Weakly Quasiregular Maps on the Plane are Quasiregular,” Duke Mathematical Journal, vol. 112, no. 2, pp. 281-305, 2002.
[
CrossRef] [Google Scholar] [Publisher Link]

[42] S. Petermichl, “The Sharp Bound for the Hilbert Transform on Weighted Lebesgue Spaces in Terms of the Classical Ap Characteristic,” American Journal of Mathematics, vol. 129, no. 5, pp. 1355-1375, 2007.
[
Google Scholar] [Publisher Link]

[43] Stefanie Petermichl, “The Sharp Weighted Bound for the Riesz Transforms,” Proceedings of the American Mathematical Society, vol. 136, no. 4, pp. 1237-1249, 2008.
[
CrossRef] [Google Scholar] [Publisher Link]

[44] Tuomas P. Hytönen, Luz Roncal, and Olli Tapiola, “Quantitative Weighted Estimates for Rough Homogeneous Singular Integrals,” Israel Journal of Mathematics, vol. 218, no. 1, pp. 133-164, 2017.
[
CrossRef] [Google Scholar] [Publisher Link]

[45] Tuomas P. Hytönen, “The Sharp Weighted Bound for General Calderón-Zygmund Operators,” Annals of Mathematics, vol. 175, no. 3, pp. 1473-1506, 2012.
[
Google Scholar] [Publisher Link]

[46] Tuomas Hytönen, “The A2 Theorem: Remarks and Complements,” American Mathematical Society, vol. 612, pp. 91-106, 2014.
[
Google Scholar] [Publisher Link]

[47] Vasily Vasyunin, and Alexander Volberg, The Bellman Function Technique in Harmonic Analysis, Cambridge: Cambridge University Press, vol. 186, 2020.
[
CrossRef] [Google Scholar] [Publisher Link]

[48] Wendolín Damián, Andrei K. Lerner, and Carlos Pérez, “Sharp Weighted Bounds for Mul-tilinear Maximal Functions and Calderón-Zygmund Operators,” Journal of Fourier Analysis and Applications, vol. 21, no. 1, pp. 161-181, 2015.
[
CrossRef] [Google Scholar] [Publisher Link]

[49] Xia Han, and Hua Wang, “Multilinear θ−Type Calderón-Zygmund Operators and Commutators on Products of Morrey Spaces,” arXiv:2302.05570, pp. 1-40, 2013.
[
CrossRef] [Publisher Link]

[50] Xia Han, and Hua Wang, “Multilinear θ−Type Calderón-Zygmund Operators and Commutators on Products of Weighted Amalgam Spaces,” Journal of Mathematical Inequalities, vol. 18, no. 4, pp. 1435-1487, 2024.
[
CrossRef] [Publisher Link] 

  • PDF
  • Citation
  • Abstract
  • Keywords
  • References
Citation Abstract Keywords References
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved