...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 12 | Year 2025 | Article Id. IJMTT-V71I12P102 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I12P102

A New Look into the Generating Function for the Partition Function โ„ฐ๐’ช(๐‘›)


Nilufar Mana Begum
Received Revised Accepted Published
03 Oct 2025 07 Nov 2025 29 Nov 2025 15 Dec 2025
Citation :

Nilufar Mana Begum, "A New Look into the Generating Function for the Partition Function โ„ฐ๐’ช(๐‘›)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 12, pp. 8-12, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I12P102

Abstract
Let โ„ฐ๐’ช(๐‘›), denote the number of partitions of ๐‘› where every even part is less than each odd part and โ„ฐ๐’ช(๐‘›), denote the number of partitions counted by โ„ฐ๐’ช(๐‘›), in which only the largest even part appears an odd number of times. In our work, the author uses 5-dissections of ๐‘ž-products and some identities for the Rogers-Ramanujan continued fraction to obtain the exact generating function for โ„ฐ๐’ช(10๐‘›+8).
Keywords
Partitions, Partition congruences, Rogers-Ramanujan continued fraction.
References

[1] George E. Andrews, โ€œInteger Partitions with Even Parts Below Odd Parts and the Mock Theta Functions,โ€ Annals of Combinatorics, vol. 22, no. 3, pp. 433-445, 2018.
[
CrossRef] [Google Scholar] [Publisher Link]

[2] Bruce C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, 2006.
[
Google Scholar]

[3] Dandan Chen, and Rong Chen, โ€œCongruence Modulo 4 for Andrewsโ€™ Even Parts Below Odd Parts Partition Function,โ€ Annals of Combinatorics, vol. 27, no. 2, pp. 269-279, 2023.
[
CrossRef] [Google Scholar] [Publisher Link]

[4] F.G. Garvan, and C. Morrow, โ€œMultiplicative Congruences for Andrewsโ€™s Even Parts below Odd Parts Function and Related Infinite Products,โ€ Arabian Journal of Mathematics, pp. 1-16, 2025.
[
CrossRef] [Google Scholar] [Publisher Link]

[5] Morris Newman, โ€œModular Forms Whose Coefficients Possess Multiplicative Properties, II,โ€ Annals of Mathematics, vol. 75, no. 2, pp. 242-250, 1962.
[
CrossRef] [Google Scholar] [Publisher Link]

[6] Utpal Pore, and Syeda Noor Fathima, โ€œSome Congruences for Andrewsโ€™ Partition Function EO(n),โ€ Kyungpook Mathematical Journal, vol. 61, no. 1, pp. 49-59, 2021.
[
CrossRef] [Google Scholar] [Publisher Link]

[7]  S. Ramanujan, โ€œSome Properties of p(n), the Number of Partitions of n*,โ€ Proceedings of the Cambridge Philosophical Society, vol. 19, pp. 207-210, 1919.
[
Google Scholar] [Publisher Link]

[8] Chiranjit Ray, and Rupam Barman, โ€œOn Andrewsโ€™ Integer Partitions with Even Parts below Odd Parts,โ€ Journal of Number Theory, vol. 215, pp. 321-338, 2020.
[
CrossRef] [Google Scholar] [Publisher Link]

[9] Abhishek Sarma, โ€œFurther Arithmetic Properties of Andrewsโ€™ Integer Partitions with Even Parts below Odd Parts,โ€ Quaestiones Mathematicae, pp. 1-19, 2025.
[
CrossRef] [Google Scholar] [Publisher Link]

[10] Ernest X.W. Xia, โ€œA New Congruence Modulo 25 for 1-Shell Totally Symmetric Plane Partitions,โ€ Bulletin of the Australian Mathematical Society, vol. 91, no. 1, pp. 41-46, 2015.
[
CrossRef] [Google Scholar] [Publisher Link]

  • PDF
  • Citation
  • Abstract
  • Keywords
  • References
Citation Abstract Keywords References
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved