...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 4 | Year 2025 | Article Id. IJMTT-V71I4P104 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I4P104

Subjacent Manifold whose Lie Algebra is of Analytic and Invariant Vector Fields under Left Translations


Francisco Bulnes
Received Revised Accepted Published
27 Feb 2025 30 Mar 2025 16 Apr 2025 30 Apr 2025
Abstract

The study of the Lie algebra of invariant analytic fields under left translations leads us to establish that the dimension of the subjacent manifold of the analytic group whose Lie algebra has immersed a Lie algebra of invariant analytic fields under left translations is finite and is equal to the dimension of the analytic group. This will be demonstrated punctually and with precision. 

Keywords

Analytic Group, Analytic and Invariant Vector Fields, Left Translations, Lie Algebra, Lie Group.  

References

[1] Claude Chevalley, Theory of Lie Groups, Courier Dover Publications, pp. 1-224, 2018.
[Google Scholar] [Publisher Link]
[2] Lev S. Pontrjagin, Topological groups, 4th ed., Princeton University Press, pp. 1-299, 1952.
[Google Scholar] [Publisher Link]
[3] Jean-Pierre Serre, Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, W.A. Benjami, pp. 1-300, 1965.
[Google Scholar] [Publisher Link]
[4] Izrailʹ Moiseevich Gelʹfand, Mark Iosifovich Graev, and Ilʹia Iosifovich Piatetskiĭ-Shapiro, Representation Theory and Automorphic Functions, Saunders, pp. 1-426, 1968.
[Publisher Link]
[5] Thomas J. Enright, and Nolan R. Wallach, “The Fundamental Series of Representations of a Real Semisimple Lie Algebra,” Acta Mathematica, vol. 140, pp. 1-32, 1978.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Nicolas Bourbaki, Elements of Mathematics: Lie Groups and Algebras-Chapter 3, Hermann, pp. 1-185, 1971.
[Publisher Link]
[7] A.A. Kirillov, Elements of the Theory of Representations, Springer Berlin Heidelberg, pp. 1-318, 1976.
[Google Scholar] [Publisher Link]
[8] Sigurdur Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, pp. 1-628, 1979.
[Google Scholar] [Publisher Link]
[9] David A. Vogan, Representations of Real Reductive Lie Groups, Birkhauser, Boston, MA, pp. 1-54, 1981.
[Publisher Link]

Citation :

Francisco Bulnes, "Subjacent Manifold whose Lie Algebra is of Analytic and Invariant Vector Fields under Left Translations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 4, pp. 27-36, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I4P104

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved