...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 7 | Year 2025 | Article Id. IJMTT-V71I7P109 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I7P109

Domination in Cubic Circulant Graphs


I. Rani
Received Revised Accepted Published
26 May 2025 30 Jun 2025 18 Jul 2025 28 Jul 2025
Citation :

I. Rani, "Domination in Cubic Circulant Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 7, pp. 98-101, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I7P109

Abstract

A Cayley graph is a graph constructed out of a group Γ and its generating set A. In this paper, the domination number of Cay(𝑍𝑛, A) = Cir(n, A), for the generating set A with cardinality three is determined. 

Keywords

Cayley graphs, Domination number, Dominating set, Gamma set. 

References

[1] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater, Fundamentals of Domination in Graphs, CRC Press, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[2] T. Tamizh Chelvam, and I. Rani, “Dominating Sets in Cayley graphs on Zn,” Tamkang Journal of Mathematics, vol. 38, no. 4, pp. 341 345, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[3] T. Tamizh Chelvam, and I. Rani, “Independent Domination Number of Cayley Graphs on Zn,” The Journal of Combinatorial and Combinatorial Computing, vol. 69, pp. 251–255, 2009.
[Google Scholar] [Publisher Link]
[4] T. Tamizh Chelvam, and I. Rani, “Total and Connected Domination numbers for Cayley graphs on Zn,” Advanced Studies in Contemporary Mathematics, vol. 20, no. 1, pp. 57-61, 2010.
[Google Scholar]
[5] S. Lakshmivarahan, and Sudarshan K. Dhall, “Rings, Torus and Hypercubes Architectures/ Algorithms for Parallel Computing,” Parallel Computing, vol. 25, no. 13-14, pp. 1877-1906, 1999.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Michael D. Plummer, “Some Recent Results on Domination in Graphs,” Discussiones Mathematicae Graph Theory, vol. 26, pp. 457-474, 2006.
[Google Scholar]
[7] Bruce Reed, “Paths, Stars, and The Number Three,” Combinatorics, Probability and Computing, vol. 5, no. 3, pp. 277-295, 1996.
[CrossRef] [Google Scholar] [Publisher Link]
[8] A.V. Kostochka, and B.Y. Stodolsky, “On Domination in Connected Cubic Graphs,” Discrete Mathematics, vol. 304, no. 1-3, pp. 45-50, 2005.
[CrossRef] [Google Scholar] [Publisher Link]
[9] Christian Löwenstein, and Dieter Rautenbach, “Domination in Graphs of Minimum Degree at Least Two and Large Girth,” Graphs and Combinatorics, vol. 24, pp. 37–46, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Michael A. Henning, and Anders Yeo, Total Domination in Graphs, Springer Monographs in Mathematics, 2013. [CrossRef] [Google Scholar] [Publisher Link]
[11] Paul Dorbec, and Michael Antony Henning, “The 1/3 - Conjectures for Domination in Cubic Graphs,” arXiv:2401.17820, 2024.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Bin Sheng, and Changhong Lu, “The Paired Domination Number of Cubic Graphs,” arXiv preprint arXiv:2011.12496, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Simone Dantas et al., “Domination and Total Domination in Cubic Graphs of Large Girth,” Discrete Applied Mathematics, vol. 174, pp. 128–132, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Misa Nakanishi, “Generalized Domination Structure in Cubic Graphs,” arXiv:1901.10781, 2019.
[CrossRef] [Google Scholar] [Publisher Link]

  • PDF
  • Citation
  • Abstract
  • Keywords
  • References
Citation Abstract Keywords References
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved