...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 8 | Year 2025 | Article Id. IJMTT-V71I8P105 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I8P105

On Stable Cartan Subgroups in Lie Algebras


Kuparala Venkata Vidyasagar, P. Mangamma
Received Revised Accepted Published
16 Jun 2025 25 Jul 2025 13 Aug 2025 30 Aug 2025
Citation :

Kuparala Venkata Vidyasagar, P. Mangamma, "On Stable Cartan Subgroups in Lie Algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 8, pp. 24-33, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I8P105

Abstract

This paper investigates 𝛤-stable Cartan subgroups in connected Lie groups and their associated Lie algebras. We extend the results of Borel and Mostow on the existence of automorphism-invariant Cartan subalgebras to the group setting. For a real semisimple Lie algebra 𝔤, we prove that there exists a nonidentity automorphism that fixes representatives of all conjugacy classes of Cartan subalgebras. Explicit constructions for classical Lie algebras (𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) are provided. Applications include characterizing stable Cartan subgroups in quotients and normal subgroups.  

Keywords

Cartan subgroups, Automorphism-invariant subgroups, Admissible root systems, Classical Lie algebras.  

References

[1] A. Borel, and G.D. Mostow, “On Semi-Simple Automorphisms of Lie algebras,” Ann. Math.vol. 61, pp. 389-504, 1955.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Mitsuo Sugiura, “Conjugate Classes of Cartan subalgebras in Real Semisimple Lie Algebras,” Journal of the Mathematical Society of Japan, vol. 11, no. 4, pp. 374-434, 1959.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Parteek Kumar, Arunava Mandal, and Shashank Vikram Singh, “On Stable Cartan subgroups of Lie Groups,” arXiv:2507.07027, pp. 1-22, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Saurav Bhaumik, and Arunava Mandal, “On the Density of Images of the Power Maps in Lie Groups,” Archiv der Mathematik, vol. 110, no. 2, pp. 115-130, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Pralay Chatterjee, “Automorphism Invariant Cartan Subgroups and Power Maps of Disconnected Groups,” Mathematische Zeitschrift, vol. 269, no. 1, pp. 221-233, 2011.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Anthony W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Birkhäuser, 2002.
[Google Scholar] [Publisher Link]
[7] Arunava Mandal, and Riddhi Shah, “The Structure of Cartan Subgroups in Lie Groups,” Mathematische Zeitschrift, vol. 299, pp. 1587-1606, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Victor G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge University Press, 1990.
[Google Scholar] [Publisher Link]
[9] Mikhail Borovoi, “Abelian Galois Cohomology of Reductive Groups,” Memoirs of the American Mathematical Society, vol. 109, no. 528, pp. 1-46, 1994.
[Google Scholar]
[10] François Bruhat, and Jacques Tits, “Groupes Réductifs Sur Un Corps Local,” Publications Mathématiques de l'IHÉS, vol. 41, pp. 5-251, 1972.
[Publisher Link]
[11] Brian Conrad, “Reductive Group Schemes,” Astérisque, vol. 370, pp. 53-137, 2015.
[Google Scholar] [Publisher Link]
[12] Max-Albert Knus, The Book of Involutions, AMS Colloquium Publication, 1998.
[Google Scholar] [Publisher Link]
[13] T.A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[14] James E. Humphreys, Introduction to Lie Algebras and Representation Theory, 1972.
[Google Scholar] [Publisher Link]
[15] Wee Liang Gan, and Victor Ginzburg, “Quantization of Slodowy Slices,” International Mathematics Research Notices, vol. 2002, no. 5, pp. 243-255, 2002.
[CrossRef] [Google Scholar] [Publisher Link]

  • PDF
  • Citation
  • Abstract
  • Keywords
  • References
Citation Abstract Keywords References
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved