Volume 71 | Issue 8 | Year 2025 | Article Id. IJMTT-V71I8P105 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I8P105
Received | Revised | Accepted | Published |
---|---|---|---|
16 Jun 2025 | 25 Jul 2025 | 13 Aug 2025 | 30 Aug 2025 |
Kuparala Venkata Vidyasagar, P. Mangamma, "On Stable Cartan Subgroups in Lie Algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 8, pp. 24-33, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I8P105
This paper investigates 𝛤-stable Cartan subgroups in connected Lie groups and their associated Lie algebras. We extend the results of Borel and Mostow on the existence of automorphism-invariant Cartan subalgebras to the group setting. For a real semisimple Lie algebra 𝔤, we prove that there exists a nonidentity automorphism that fixes representatives of all conjugacy classes of Cartan subalgebras. Explicit constructions for classical Lie algebras (𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) are provided. Applications include characterizing stable Cartan subgroups in quotients and normal subgroups.
Cartan subgroups, Automorphism-invariant subgroups, Admissible root systems, Classical Lie algebras.
[1] A. Borel, and G.D. Mostow, “On Semi-Simple Automorphisms of Lie algebras,” Ann. Math.vol. 61, pp. 389-504, 1955.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Mitsuo Sugiura, “Conjugate Classes of Cartan subalgebras in Real Semisimple Lie Algebras,” Journal of the Mathematical Society of
Japan, vol. 11, no. 4, pp. 374-434, 1959.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Parteek Kumar, Arunava Mandal, and Shashank Vikram Singh, “On Stable Cartan subgroups of Lie Groups,” arXiv:2507.07027, pp. 1-22,
2023.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Saurav Bhaumik, and Arunava Mandal, “On the Density of Images of the Power Maps in Lie Groups,” Archiv der Mathematik, vol. 110,
no. 2, pp. 115-130, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Pralay Chatterjee, “Automorphism Invariant Cartan Subgroups and Power Maps of Disconnected Groups,” Mathematische Zeitschrift,
vol. 269, no. 1, pp. 221-233, 2011.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Anthony W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Birkhäuser, 2002.
[Google Scholar] [Publisher Link]
[7] Arunava Mandal, and Riddhi Shah, “The Structure of Cartan Subgroups in Lie Groups,” Mathematische Zeitschrift, vol. 299, pp.
1587-1606, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Victor G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge University Press, 1990.
[Google Scholar] [Publisher Link]
[9] Mikhail Borovoi, “Abelian Galois Cohomology of Reductive Groups,” Memoirs of the American Mathematical Society, vol. 109, no. 528,
pp. 1-46, 1994.
[Google Scholar]
[10] François Bruhat, and Jacques Tits, “Groupes Réductifs Sur Un Corps Local,” Publications Mathématiques de l'IHÉS, vol. 41, pp. 5-251,
1972.
[Publisher Link]
[11] Brian Conrad, “Reductive Group Schemes,” Astérisque, vol. 370, pp. 53-137, 2015.
[Google Scholar] [Publisher Link]
[12] Max-Albert Knus, The Book of Involutions, AMS Colloquium Publication, 1998.
[Google Scholar] [Publisher Link]
[13] T.A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[14] James E. Humphreys, Introduction to Lie Algebras and Representation Theory, 1972.
[Google Scholar] [Publisher Link]
[15] Wee Liang Gan, and Victor Ginzburg, “Quantization of Slodowy Slices,” International Mathematics Research Notices, vol. 2002, no. 5,
pp. 243-255, 2002.
[CrossRef] [Google Scholar] [Publisher Link]