Volume 71 | Issue 9 | Year 2025 | Article Id. IJMTT-V71I9P102 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I9P102
Received | Revised | Accepted | Published |
---|---|---|---|
13 Jul 2025 | 15 Aug 2025 | 03 Sep 2025 | 18 Sep 2025 |
Molhu Prasad Jaiswal, Narayan Prasad Pahari, Purushottam Parajuli, Nabaraj Adhikari, "Fibonacci and Lucas Numbers and their Bi-Complex Extension," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 9, pp. 9-16, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I9P102
This paper aims to introduce a new type of Lucas and Fibonacci numbers, which are said to be bi-complex Lucas and bi-complex Fibonacci numbers. Also, we prove the D’ocagne identity. Further, we give the relation between the identities of negabicomplex Lucas numbers, negabicomplex Fibonacci numbers, and the Binet formula.
Bi-complex numbers, Binet formula, Fibonacci numbers, Lucas numbers.
[1] Mahmut Akyiğit, Hidayet Hüda Kösal, and Murat Tosun, “Split Fibonacci Quaternions,” Advances in Applied Clifford Algebras, vol.
23, pp. 535-545, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[2] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, 1997.
[Google Scholar] [Publisher Link]
[3] İlkay Arslan Güven, and Semra Kaya Nurkan, “A New Approach to Fibonacci, Lucas Numbers and Dual Vectors,” Advances in Applied
Clifford Algebras, vol. 25, pp. 577-590, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Serpil Halici, “On Fibonacci Quaternions,” Advances in Applied Clifford Algebras, vol. 22, pp. 321-327, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[5] A.F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Muthulakshmi R. Iyer, “Some Results on Fibonacci Quaternions,” The Fibonacci Quarterly, vol. 7, no. 2, pp. 201-210, 1969.
[CrossRef] [Google Scholar] [Publisher Link]
[7] Sıddıka Özkaldı Karakuş, and Ferdağ Kahraman Aksoyak, “Generalized Bicomplex Numbers and Lie Groups,” Advances in Applied
Clifford Algebras, vol. 25, pp. 943-963, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Donald Knuth, “NegaFibonacci Numbers and the Hyperbolic Plane,” San Jose-Meeting of the Mathematical Association of America,
2008.
[Google Scholar]
[9] Cahit Köme, Sure Köme, and Paula Catarino, “Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers,”
Journal of Mathematical Extension, vol. 16, no. 2, pp. 1-17, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Thomas Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley Interscience Publication, 2001.
[CrossRef] [Google Scholar] [Publisher Link]
[11] Semra Kaya Nurkan, and İkay Arslan Güven, “Dual Fibonacci Quaternions,” Advances in Applied Clifford Algebras, vol. 25, pp. 403
414, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Purushottam Parajuli et al., “On Some Sequence Spaces of Bicomplex Number,” Nepal Journal of Mathematical Science, vol. 6, no. 1,
pp. 35-44, 2025.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Price, An Introduction to Multicomplex Spaces and Functions, CRC Press, 1991.
[CrossRef] [Google Scholar] [Publisher Link]
[14] D. Rochon, and M. Shapiro, “On Algebraic Properties of Bicomplex and Hyperbolic Numbers,” Analele Universitatii Din Oradea -
Fascicola Matematica, vol. 11, pp. 1-28, 2004.
[Google Scholar] [Publisher Link]
[15] Corrado Segre, “Real Representations of Complex Shapes and Hyperalgebraic Entities,” Mathematical Annals, vol. 40, pp. 413-467,
1892.
[CrossRef] [Google Scholar] [Publisher Link]
[16] M.N.S. Swamy, “On Generalized Fibonacci Quaternions,” The Fibonacci Quarterly, vol. 11, no. 5, pp. 547-550, 1973.
[CrossRef] [Google Scholar] [Publisher Link]
[17] Steven Vajda, Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood Limited Publication, 1989.
[Google Scholar] [Publisher Link]
[18] E. Verner, and Jr. Hoggatt, Fibonacci and Lucas Numbers, The Fibonacci Association, 1969.
[Google Scholar] [Publisher Link]
[19] E.W. Weisstein, Fibonacci Number, Math World, 2003.
[Google Scholar]