Volume 11 | Number 1 | Year 2014 | Article Id. IJMTT-V11P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V11P502
Let Snλ,μ(α, s, t) be the class of normalized analytic functions defined in the open unit disk satisfying ((s−t)(Dnλ,μf(z))’/ Dnλ,μf(sz)−Dnλ,μf(tz))> α,|t| ≤ 1, s ≠ t for some α(0 ≤ α < 1) and Dnλ,μ is a linear multiplier differential operator defined by the author in [8]. The object of the present paper is to discuss some properties of functions f(z) belonging to the classes Snλ,μ(α, s, t) and Tnλ,μ(α, s, t) where f(z) € Tnλ,μ(α, s, t) if and only if zf(z) € Snλ,μ(α, s, t).
[1] D. R˘aducanu and H. Orhan, Subclasses of analytic functions defined by a generalized differential
operator, Int. J. Math. Anal., 4(1)(2010) 1-15.
[2] E. Deniz, H. Orhan, The Fekete Szeg¨o problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010) 37-47.
[3] F.M. Al-Odoudi,On univalent functions defined by a generalized Salagean operator,Int. J. Math. Sci.,27 (2004) 1429-1436.
[4] G. S. S˘al˘agean, Subclasses of univalent functions, Comp. Anal.-Proc. 5th Rom.-Finnish Seminar, Bucharest 1981, Part 1, Lec. Notes Math., 1013 (1983) 362-372.
[5] H. Orhan, N. Yagmur and MC¸ a˘glar Coefficient Estimates for Sakaguchi type functions, Sarajevo J. Math. Vol. 8(21)(2012), 235-244.
[6] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc., Japan 11 (1959) 72-75.
[7] N. E. Cho, O.S. Kwon, S. Owa, Certain subclasses of Sakaguchi functions, SEA Bull. Math., 17 (1993) 121-126.
[8] S. Owa, T. Sekine, Rikuo Yamakawa, On Sakaguchi functions, Appl. Math. Comp., 187 (2007) 356-361.
[9] S. Owa, T. Sekine, Rikuo Yamakawa, Note on Sakaguchi functions, RIMS, Kokyuroku, 1414 (2005) 76-82.
[10] B. A. Frasine, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci., 10(2) (2010), 206-211.
[11] Y. Polato˘glu, E. Yavuz, Multivalued Sakaguchi functions, Gen. Math., 15(2-3)(2007), 132-140. [12] B. A. Frasin, M. Darus, Subordination results on subclasses concerning Sakaguchi functions,J. Inequal. Appl.,2009, Article ID 574014.
[13] A. W. Goodman, On uniformly starlike functions,J. Math. Anal. Appl.,155(1991, 364-370). 14
[14] F. Ronning, on uniform starlikeness and related properties of univalent functions, Complex Variables, Theory Appl., 24(1994)233-239.
G. P. Saritha, S. Latha, "Coefficient Estimates for SAKAGUCHI Type Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 11, no. 1, pp. 1-14, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V11P502