Volume 12 | Number 1 | Year 2014 | Article Id. IJMTT-V12P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V12P504
Some quadrature rules involving values of the integrand and its derivatives at a certain set of nodes in the domain of analyticity of an analytic function have been constructed for the numerical evaluation of the contour integral of the function along a directed line segment. The degree of precision of the quadrature rules has been enhanced by examining the truncation error associated with the quadrature rules.
[1] G. Birkhoff and D. M. Young, “Numerical quadrature of analytic and harmonic functions”, J. Math. Phys., Vol. 29, pp. 217 – 221, 1950.
[2] D. D. Tosic, “A modification of the Birkhoff-Young quadrature formula for analytic functions”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 602 – 633, pp.170-172, 1978.
[3] F. G. Lether, “On Birkhoff-Young quadrature of analytic functions “, J. Copm. Appl. Math., Vol. 2, pp.81 – 84, 1976.
[4] M. Acharya, B. P. Acharya and M. M. Nayak, “Approximate evaluation of integrals of analytic functions”, FACTA Universitatis (NIS) Ser. Math. Inform., Vol. 23, pp.63-68, 2008.
[5] G. V. Milovanovic, “Generalized quadrature formulae for analytic functions”, Appl. Math. & computation, Vol. 218, pp.8537 – 8551, 2012.
B. P. Acharya, M. Acharya, S. B. Sahoo, "Numerical Evaluation of Integrals of Analytic Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 12, no. 1, pp. 27-30, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V12P504