Volume 12 | Number 1 | Year 2014 | Article Id. IJMTT-V12P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V12P507
We give necessary and sufficient conditions for a semi-regular space to be semi-compact and for a map to be semi-compact preserving (semi-compact) when domain (co-domain) of map is SCS.
[1] Dorsett, C., Semi-compactness, semi-separation axioms and product spaces, Bull. Malaysian Math. Soc. (2) 4(1981), 21-28.
[2] Dorsett, C., Semi-convergence and semi-compactness, Indian J. Mech. Math., 19(1981), No. 1, 11-17.
[3] Dorsett, C., Semi-regular spaces, Soochow J. Math. 8(1982), 45-53.
[4] Levine. M., Semi-open sets and semi-continuity in topological spaces, Arner. Math.monthly, 70 (1963), 36-41.
[5] Modak, Shyamapada., Remarks on Dense Set, International Mathematical Forum, 6 (2011) (44), 2153-2158.
[6] Sarsak, M.S., On Semi-compact Sets and Associated Properties, International Journal of Mathematics and Mathematical Sciences, 2009 (2009), Article ID 465387, 8 pages.
[7] Wilansky, A., Topology for Analysis, Ginn and Company, (1970).
Navpreet Singh Noori, Sandeep Kaur, "Some Results on Semi-Compactness," International Journal of Mathematics Trends and Technology (IJMTT), vol. 12, no. 1, pp. 44-46, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V12P507