Volume 12 | Number 2 | Year 2014 | Article Id. IJMTT-V12P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V12P511
In this paper we cherecterize the integrability and introduce an explicit expression of rst integral then consequently the non-existence of pe- riodic orbits for rational type of the planar Kolmogorove systems of the form x = x(Pn1 (x,y) /Pn2 (x,y) + Rk1 (x,y)/Rk2 (x,y)) y = y (Qm1 (x,y)/Qm2 (x,y) + Rk1(x,y)/Rk2 (x,y)) where n1, n2, m1, m2, k1, and k2 are positive integers and Pi , Qj and Rk are homogeneous polynomials of degree i , j and k respectively such that n1 - n2 = m1 - m2. We also present an example in order to illustrate the applicability of the result.
[1] O.I. Bogoyavlenskij, Itegrable Lotka-Volterra systems, Regol. Chaotic Dyn. 13 (2008) 543-556.
[2] O.I. Bogoyavlenskij, Y. Itoh, T. Yukawa, Lotka-Volterra systems integrable in quadratures, J. Math. Phys.49 (2008), 053501, 6 pp.
[3] F.H. Busse, Transition to turbulence via the statistical limit cycle rout, Syn- ergetic, Springer-Verlag, Belin, 1978, p. 39.
[4] L. Cairo, J. Llibre, Phase portrait of cubic polynomial vector
elds of Lotka- Volterra type having a rational
rst integral of degree 2, J. Phys. A 40 (2007) 6329-6348.
[5] L. Cairo, H. Giacomini, J. Llibre, Liouvillian
rst integrals for the planar Lotka-Volterra system,Rend.Circ. Mat. Palermo 2 (5) (2003) 389-418.
[6] P. Gao, Hamiltonian for the Lotka-Volterra systems, Phys.Lett. A 273 (2000) 85-96.
[7] R. Gladwin Pradeep, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On certain new integrable second order nonlinear di¤erential equations and their connection with two dimensional Lotka-Volterra system, J. Math. Phys. 51 (2010). 033519, 23 pp.
[8] A. Colmogorov, Sulla teoria di Volterra della lotta per lesistenza, Giornale dellIstituto Italiano degli Attuari 7 (1936) 74-80.
[9] G. Laval, R. Pellar, Plasma Physics, in: Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975.
[10] J. Llibre, T. Salhi, On the dynamics of a class of Kolmogorov systems, Applied Math. and Comp. 225 (2013) 242-245.
[11] J. Llibre, C. Valls, Global analytic
rst integrals for the real planar Lotka- Volterra system, J. Math. Phys. 48 (2007). 033557, 13 pp.
[12] A.J. Lotka, Analytical note on certain rhythmic relations in organic systems, Pric. Natl. Acad. Sci. USA 6 (1920) 410-415.
[13] R.M. May, Stability and complexity in model Ecosystems, Priceton, New Jersey, 1974.
[14] V. Volterra, Lecons sur la Theorie Mathematique de la lutte pour la vie, Gauthier Villars, Paris, 1931.
Khalil I.T. Al-Dosary, "Explicit Expression for First Integral of a Rational Type of Kolmogorov Systems," International Journal of Mathematics Trends and Technology (IJMTT), vol. 12, no. 2, pp. 69-74, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V12P511