Volume 12 | Number 2 | Year 2014 | Article Id. IJMTT-V12P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V12P512
In this paper, we have studied p-Sasakian Einstein manifold which satisfy the condition r –n(n - 1), a + 2(n - 1)b ≠ 0 i. e. the constant scalar curvature r. also the p-Sasakian Einstein manifold satisfying div C = 0 have studied. where C is quasi-conformal curvature tensor and r is the scalar curvature
[1] I. Sato, On a structure similar to almost contact structure I, Tensor N. S., 30, 1976, 219 - 224.
[2] T. Adati and T. Miyazawa, Some properties of p-Sasakian manifolds, TRU, Maths,13(1), 1997, 33-42.
[3] S. I. and Matsumoto, K, On p-Sasakian manifold satisfying Certain conditions, Tensor N. S., 33, 1979, 173 - 178.
[4] C. Ozgur and M. M. Tripathi, On p-Sasakian manifold Satisfying certain conditions on the concircular curvature tensor, Turk J. Math., 30, 2006, 1-9.
[5] M. C. Chaki and M. Tarafdar, On a type of Sasakian manifold Serdica J. math, 16, 1990, 23-28.
[6] D. Narain and P. R. Singh, On -einstein p-Sasakian manifold, Tensor N. S., 61, 1999, 158 - 163.
[7] S. Abosos Ali, U. C. De and T. Q. Binch, On K-contact-Einstein manifolds, steps in Differential Geometry, Proceedings of Coll. on Differential Geometry, 2000, 311-315.
[8] Hicks, N.J., Notes on differential geometry,Affiliated East West Press pvt. Ltd., 1969, 95.
[9] Yano, K. and Sasaki, S: Riemannian manifolds admitting a Conformal transformation group, J. Diff, Geom-2, 1968, 161.
Gajendra Nath Tripathi, Sudhir Dubey, Dhruwa Narain, "Quasi Conformal Curvature Tensor on a P-Sasakian Einstein Manifold," International Journal of Mathematics Trends and Technology (IJMTT), vol. 12, no. 2, pp. 75-80, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V12P512