Volume 12 | Number 2 | Year 2014 | Article Id. IJMTT-V12P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V12P513
In this paper, the duplication of an arbitrary vertex by a new edge of cycle Cn (n ≥ 3), the duplication of an arbitrary edge by a new vertex of cycle Cn (n ≥ 3) , < Sn(1):Sn(2):Sn(3) > , < Wn(1):Wn(2):Wn(3) >, and the graph obtained by joining two copies of Sn by a path Pk (n ≥ 4).
[1] I. Cahit, “Cordial graphs: A weaker version of graceful and harmonious graphs”, Ars Combinatoria, Vol 23, pp. 201-207, 1987.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980. [3] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
[4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, # DS6, 2012.
[5] P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014.
[6] P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, No. 2, 2014.
[7] S. K. Vaidya and N. H. Shah, “Some Star and Bistar Related Divisor Cordial Graphs”, Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, 2013.
[8] S. K. Vaidya and N. H. Shah, “Further Results on Divisor Cordial Labeling”, Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013.
[9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, “Divisor cordial graphs”, International J. Math. Combin., Vol 4, pp. 15-25, 2011.
[10] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, “Special classes of divisor cordial graphs”, International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.
A. Muthaiyan, P. Pugalenthi, "Some New Divisor Cordial Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 12, no. 2, pp. 81-88, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V12P513