Volume 13 | Number 1 | Year 2014 | Article Id. IJMTT-V13P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V13P506
Here, we consider a two dimensional nonlinear discrete map to find out a few inherent attributes i.e. fixed points, periodic points, bifurcation values of periods2^n,n=0,1,2,3,4…We use suitable numerical methods and have shown how the period doubling bifurcation points ultimately converge to the Feigenbaum constant. We have calculated Feigenbaum value also. We have further verified our findings with the help of bifurcation diagram & the Lyapunov exponent of the map. Computer software package ‘Mathematica’ and ‘C-program’ are used prudentially to implement numerical algorithms for our purpose.
1. Beddington, J.R. Free C.A. Lawton , J.H, “ Dynamic Completely in predator- Prey models framed in difference equations” Nature, 225 (1975) 58-60.
2. Chartier, S, et al. “A nonlinear dynamic artificial neural network model of memory “New Ideas in Psychology (2007). Doi : 10.1016/ J.newideapsych.2007.07.005
3. Davie A.M. and Dutta T.K. Period – doubling in two- Parameter Families, Physica D, 64,345-354, 1993
4. Dutta T.K, Jain A.K and , Bhattacharjee.D “Period Doubling Scenario Exhibit of Artificial Neural Network Mode
5. Dutta T.K, Sarmah H.K and Choudhury B ”Period doubling bifurcation in duffing Equation”
6. , Dutta,T.K, Bhattacharjee.D“ Bifurcation points, Lyapunov exponent nd fractal dimention in a two dimentionalnonlinear map”
7. Dutta T K, and Das N” Determination of periodic orbits with bifurcation values, time series analysis and Lyapunov exponents on two dimensional discrete systems”
8. Feignbaun, M. J“Qualitative University for a class of non- linear transformations, “J. Statist. Pys, 19:1(1978), 25-52.
9. Feignbaun, M.J“University behavior in non-linear systems” Los Alamos science, 1(1980), 4-27.
10. .Feigenbaum M. J “The Universal Metric Properties of Nonlinear Transformations”, J. of Statistical Physics, 21:6 (1979), 669-706
11. FrØyland Jan “Introduction to Chaos and Coherence”
12. Henon. M, “A two dimensional mapping with a strange attractor “Common. math Phys.50-69-77,1976
13. Hilborn, R.C. “Chaos and Non- linear dynamics “Oxford University Press. 1994.
14. Kujnetsov, Y, “ Elements of Applied Bifurcation Theory” Springer ( 1998)
15. May, R.M, “Simple mathematical models with very complicated Dynamics” Nature Vol. 261(1976). 459.
16. Sarmah. H.K Paul, R “Period –doubling route to chaos in a two parameter invertible map with constant jacobian , “ JRRAS3(1),72-82, April 2010.
Tarini Kr. Dutta, Jayanta Kr. Das, Anil Kr. Jain, "A Few Inherent Attributes of Two Dimensional Nonlinear Map," International Journal of Mathematics Trends and Technology (IJMTT), vol. 13, no. 1, pp. 34-40, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V13P506