Volume 13 | Number 1 | Year 2014 | Article Id. IJMTT-V13P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V13P507
In this paper, we prove a fixed point theorem for a self-map on a Menger space and we generalize the theorem of Sastry and Rao [11] for a sequence of self maps on a complete probabilistic metric space.
[1] Achari, J., Fixed point theorems for a class of mappings on non-Archimedean probabilistic metric space, Mathematica 25 (1983), 5-9.
[2] Bocsan, Gh. and Constantin, Gh., The Kuratowski function and some applications to probabilistic metric space, Atti. Acad. Naz. Lincei, 55 (1973), 236-240.
[3] Chang, J.I. and Kim, C.W., Fixed points of generalized contraction mappings on Menger spaces, J. Korean Math. Soc. 19(2) (1983), 135-141.
[4] Choudhury, B.S. and Sarkar,D., Common fixed point theorems on generalizations of metric spaces, Bull. Cal. Math. Soc. 88 (1996), 303-310.
[5] Ciric, Lj.B., On fixed points of generalized contraction on probabilistic metric spaces, Publ. Inst. Math. (Beograd) (N.S.), 18 (32), (1975), 71-78.
[6] Hadzic, O., Fixed point theorem for probabilistic metric and random normed spaces, Math. Sem. Notes, Kobe Univ., 7 (1969)-261-270.
[7] Istra ̆tescu, V. I. and Sacuiu, I., Fixed point theorems for contraction mappings on probabilistic metric spaces. Rev. Roumaine Math. Pures Appl. 181 (1973), 1375-1380.
[8] Istra ̆tescu, V. I., Fixed point theorems for some classes of contraction mapping on non - Archimedean probabilistic Metric space. Publ. Math. (Debrecen), 25 (1978), 29-34.
[9] Menger, k., Statistical metric, Proc. Nat. Acad. Sci U.S.A. 28(1942), 535 - 537.
[10] Ranganathan, S., Existence of fixed points in metric and Banach Spaces, Ph.D. Thesis, B.H.U Varanasi, (1976).
[11] Sastry, K.P.R. and Srinivasa Rao, Ch., Fixed point theorems in complete Menger spaces, Journal of Indian Acad. Mathematics Vol. 25, No. 2(2003), 223-232.
[12] Singh, S.L. and Pant, B.D., Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces, Honam Math. J. 6 (1984), 1-12.
[13] Singh, S.L. and Pant, B.D., Common fixed points of weakly commuting mappings on non- Archinedean Menger spaces, Vikram J. Math. 6 (1987) 27-31.
Neetu Sharma, "Existence of Fixed Points in a Complete Probabilistic Metric Space," International Journal of Mathematics Trends and Technology (IJMTT), vol. 13, no. 1, pp. 41-49, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V13P507