Volume 14 | Number 1 | Year 2014 | Article Id. IJMTT-V14P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V14P506
H. Khosravi , E. Faryad, "Amicable Numbers and Groups II," International Journal of Mathematics Trends and Technology (IJMTT), vol. 14, no. 1, pp. 40-45, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V14P506
[1] W. Borho, B. Zahlen, in Lebendige Zahlen, Math. Miniaturen, 1 (1981).
[2] W. Borho, H. Hoffmann, Breeding Amicable Numbers in Abundance, Math. Comp, 46 (1986) 281-293.
[3] P. Bratley, J. Mckay, More Amicable Numbers, Math. Comp, 22 (1968) 677-678.
[4] R. K. Guy, Unsolved Problems in Number Theory, 1 (1981) 31-32.
[5] E. J. Lee, J. S. Madachy, the History and Discovery of Amicable Numbers, J. Recreational Math, 5 (1972) 77-93.
[6] H. J. J. Teriele, on Generating New Amicable Pairs from Given Amicable Pairs, Math. Comp, 42 (1984) 219-223.
[7] H. J. J. Te Riele, W. Borho, S. Battiato, H. Hoffmann and E. J. Lee, Table of Amicable Pairs Between 10^10 and 10^52, Centrum Voor Wiskunde en Informática, Note NM-N8603, (1986) Stichting Math, Centrum, Amsterdam.
[8] H. J. J. Teriele, Computation of all the Amicable Pairs Below 10^10, Math. Comp, 47 (1986) 361-368.
[9] P. Pollack, a Second Course in Elementary Number Theory, (2009) Providence.
[10] W. Stein, Elementary Number Theory, (2009) Springer.
[11] T. Leinster, Perfect Numbers and Groups, (2001) arXiv: math/0104012v1.
[12] D. M. Tom, Finite Groups Determined by an Inequality of the Orders of Their Subgroups, Bull. Belg. Math. Soc, (2008).
[13] M. Garca, J. M. Pedersen, and H. J. J. te Riele, Amicable Pairs, a Survey, High Primes and Misdemeanours, Lectures in Honour of the 60th Birthday of Hugh Cowie Williams Commun, Amer. Math. Soc, Providence, 41 (20040 179-196.
[14] H. Khosravi, E. Faryad, Amicable Numbers and Groups I, Int. Res. J. Pure. Algebra, (2014) 1-6.
[15] E. Sandifer, Amicable Numbers, How Euler Did It, Math. Assoc. Amer, (2007) 49–56.
[16] Yan, Y. Song, Number Theory for Computing, 2nd Edition, (2002) Springer, Berlin.
[17] Ore, Oystein, Number Theory and its History, Dover Publications Inc, (1998) New York.
[18] V. Klee, S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, MAA, (1991) New York.
[19] J. M. Pedersen, Tables of Aliquot Cycles, Electronic Resource Available at, http://amicable.homepage.dk/tables.htm.
[20] Carl. Pomerance, on the Distribution of Amicable Numbers II, J. Reine Angew. Math, (1981) 183-188.
[21] H. Golmakani, H. Khosravi, Multiplicatively Perfect Groups, Biennial International Group Theory Conference, Istanbul, (2013) 4-8.
[22] T. Medts, A. Maroti, Perfect Numbers and Finite Groups, Rend. Sem. Mat, (2012) Univ Padova.
[23] M. Garcia, New Amicable Pairs, Scripta Math, 23 (1957) 167-171.
[24] Burton, M. David, Elementary Number theory, 6th Edition, (2007) McGraw-Hill.
[25] C. Pomerance, on the Distribution of Amicable Numbers II, Journal f. d. Angewandte Mathematik, 325 (1981) 183–188.