Volume 14 | Number 1 | Year 2014 | Article Id. IJMTT-V14P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V14P506
In this paper, we introduce the special amicable numbers. Afterward we extended the notion of special amicable numbers to finite groups. Also, we will compare amicable numbers (groups) and special amicable numbers (groups). We provide some general theorem and present examples of special amicable numbers and groups.
[1] W. Borho, B. Zahlen, in Lebendige Zahlen, Math. Miniaturen, 1 (1981).
[2] W. Borho, H. Hoffmann, Breeding Amicable Numbers in Abundance, Math. Comp, 46 (1986) 281-293.
[3] P. Bratley, J. Mckay, More Amicable Numbers, Math. Comp, 22 (1968) 677-678.
[4] R. K. Guy, Unsolved Problems in Number Theory, 1 (1981) 31-32.
[5] E. J. Lee, J. S. Madachy, the History and Discovery of Amicable Numbers, J. Recreational Math, 5 (1972) 77-93.
[6] H. J. J. Teriele, on Generating New Amicable Pairs from Given Amicable Pairs, Math. Comp, 42 (1984) 219-223.
[7] H. J. J. Te Riele, W. Borho, S. Battiato, H. Hoffmann and E. J. Lee, Table of Amicable Pairs Between 10^10 and 10^52, Centrum Voor Wiskunde en Informática, Note NM-N8603, (1986) Stichting Math, Centrum, Amsterdam.
[8] H. J. J. Teriele, Computation of all the Amicable Pairs Below 10^10, Math. Comp, 47 (1986) 361-368.
[9] P. Pollack, a Second Course in Elementary Number Theory, (2009) Providence.
[10] W. Stein, Elementary Number Theory, (2009) Springer.
[11] T. Leinster, Perfect Numbers and Groups, (2001) arXiv: math/0104012v1.
[12] D. M. Tom, Finite Groups Determined by an Inequality of the Orders of Their Subgroups, Bull. Belg. Math. Soc, (2008).
[13] M. Garca, J. M. Pedersen, and H. J. J. te Riele, Amicable Pairs, a Survey, High Primes and Misdemeanours, Lectures in Honour of the 60th Birthday of Hugh Cowie Williams Commun, Amer. Math. Soc, Providence, 41 (20040 179-196.
[14] H. Khosravi, E. Faryad, Amicable Numbers and Groups I, Int. Res. J. Pure. Algebra, (2014) 1-6.
[15] E. Sandifer, Amicable Numbers, How Euler Did It, Math. Assoc. Amer, (2007) 49–56.
[16] Yan, Y. Song, Number Theory for Computing, 2nd Edition, (2002) Springer, Berlin.
[17] Ore, Oystein, Number Theory and its History, Dover Publications Inc, (1998) New York.
[18] V. Klee, S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, MAA, (1991) New York.
[19] J. M. Pedersen, Tables of Aliquot Cycles, Electronic Resource Available at, http://amicable.homepage.dk/tables.htm.
[20] Carl. Pomerance, on the Distribution of Amicable Numbers II, J. Reine Angew. Math, (1981) 183-188.
[21] H. Golmakani, H. Khosravi, Multiplicatively Perfect Groups, Biennial International Group Theory Conference, Istanbul, (2013) 4-8.
[22] T. Medts, A. Maroti, Perfect Numbers and Finite Groups, Rend. Sem. Mat, (2012) Univ Padova.
[23] M. Garcia, New Amicable Pairs, Scripta Math, 23 (1957) 167-171.
[24] Burton, M. David, Elementary Number theory, 6th Edition, (2007) McGraw-Hill.
[25] C. Pomerance, on the Distribution of Amicable Numbers II, Journal f. d. Angewandte Mathematik, 325 (1981) 183–188.
H. Khosravi , E. Faryad, "Amicable Numbers and Groups II," International Journal of Mathematics Trends and Technology (IJMTT), vol. 14, no. 1, pp. 40-45, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V14P506