Volume 14 | Number 2 | Year 2014 | Article Id. IJMTT-V14P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V14P511
Argjir Butka , Llukan Puka, "A Block Bootstrap Procedure for Long Memory Processes," International Journal of Mathematics Trends and Technology (IJMTT), vol. 14, no. 2, pp. 72-78, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V14P511
[1] B. Efron, “Bootstrap methods: another look at the jackknife”, The Annals of statistics, vol. 7, No. 1, pp. 1-26, 1979.
[2] H. Kunsch, “The jackknife and bootstrap for general stationary observations”, The Annals of Statistics, vol. 17, No. 3, pp. 1217-1241, 1989.
[3] R. Liu and K. Singh, “Moving blocks jackknife and bootstrap capture weak dependence”, Exploring the Limits of Bootstrap, Wiley, New York, pp. 225-248, 1992.
[4] E. Carlstein, “The use of subseries values for estimating the variance of a general statistic from a stationary sequence”, The Annals of Statistics, vol. 14, No. 3, pp. 1171-1179, 1986.
[5] S. N. Lahiri, “On the moving block bootstrap under long range dependence”, Statistics & Probability Letters, vol. 18, pp. 405-413, 1993.
[6] E. Carlstein, K. Do, P. Hall, T. Hesterberg, and H. R. Kunsch, “Matched-block bootstrap for dependent data”, Bernoulli, vol. 4, No. 3, pp. 305-328, 1998.
[7] G.E.P. Box and G.M. Jenkins, Time series analysis, forecasting and control. Oakland, California: Holden-Day, 1976.
[8] P. Brockwell and R. Davis, Time series: theory and methods. Springer-Verlag, 1991.
[9] A. I. McLeod and K.W. Hipel, “Preservation of the Rescaled Adjusted Range 1. A reassessment of the Hurst Phenomenon”, Water Resources Research, vol. 14, No. 3, pp. 491-508, 1978.
[10] J. Beran, Statistics for long-memory processes, New York: Chapman & Hall, 1994.
[11] C. W. Granger and R. Joyeux, “An introduction to long memory time series models and fractional differencing”, Journal of Time Series Analysis, vol. 1, pp. 15–39, 1980.
[12] J. Hosking, “Fractional differencing”, Biometrika, vol. 68, No. 1, pp. 165-176, 1981.
[13] B. B. Mandelbrot, and J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications”, SIAM Review, vol. 10, No. 4, pp. 422-437, 1968.
[14] D. Guegan, “How can we Define the Concept of Long Memory? An Econometric Survey”, Econometric Reviews, vol. 24, No. 2, pp. 113-149, 2005.
[15] P. Hall, “Resampling a coverage pattern”, Stochastic Processes and their Applications, vol. 20, pp. 231-246, 1985.
[16] D.N. Politis and J. Romano, “Circular block resampling procedure for stationary data”, Exploring the Limits of Bootstrap, Wiley-New York, pp. 263-270, 1992.
[17] D. Politis and J. Romano, “The stationary bootstrap”, JASA, vol. 89, pp. 1303-1313, 1994.
[18] G.C. Franco and V.A. Reisen, “Bootstrap techniques in semiparametric estimation methods for ARFIMA models: a comparison study”, Computational Statistics & Data Analysis, vol. 19, pp. 243–259, 2004.
[19] T. Hesterberg, “Matched-Block Bootstrap for Long Memory Processes”, MathSoft, Inc., Seattle, USA, Research Report No. 66, 1997.
[20] P. Hall, J. L. Horowitz and B-Y. Jing, “On blocking rules for the bootstrap with dependent data”, Biometrika, vol. 82, No. 3, pp. 561-574, 1995.
[21] D.N. Politis, and H. White “Automatic block-length selection for the dependent bootstrap”, Econometric Reviews, vol. 23, No.1, pp. 53-70, 2004.
[22] A. Patton, D.N. Politis and H. White, “CORRECTION TO "Automatic block-length selection for the dependent bootstrap" by D. Politis and H. White”, Econometric Reviews, vol. 28, No. 4, pp. 372-375, 2009.
[23] Ekonomi, L. and Butka, A. 2011. “Jackknife and bootstrap with cycling blocks for the estimation of fractional parameter in ARFIMA model”, Turk. J. Math., 35(1), 151-158.
[24] A. Butka, L. Puka and I. Palla, “Bootstrap testing for long range dependence”, International Journal of Mathematics Trends and Technology, vol. 8, No. 3, pp. 164-172, 2014.
[25] D. Nordman and S.N. Lahiri, “Validity of the sampling window method for long-range dependent linear processes”, Econometric Theory, vol. 21, pp. 1087-1111, 2005.
[26] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, 1993.