Volume 17 | Number 1 | Year 2015 | Article Id. IJMTT-V17P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V17P501
Let f: V(G) → {1,2,…,p+q} be an injective function. For a vertex labeling “f” the induced edge labeling f* (e=uv) is defined by, f* (e) = ⌈√(f(u)f(v) )⌉ or ⌊√(f(u)f(v) )⌋.Then f is called a Super Geometric mean labeling if {f(V(G))} U {f(e):e ε E(G)} = {1,2,…,p+q}, A graph which admits Super Geometric mean labeling is called Super Geometric mean graph. In this paper, we prove that Double Triangular Snakes and Alternate Double Triangular Snake graphs and Super Geometric mean graphs.
[1] Gallian J.A., “A dynamic survey of graph labeling”. The electronic Journal of Combinatorics 2011, 18# DS6.
[2] Harary F., 1988, “Graph theory” Narosa publishing House, New Delhi.
[3] Jeyasekaran.C, Sandhya. S.S and David Raj.C, “Some Results on Super Harmonic mean graphs”, International Journal of Mathematics Trend and Technology, Vol.6(3) (2014), 215-224.
[4] Somasundaram.S and Ponraj.R, 2003 “Mean Labeling” of graphs, National Academy of Science letters Vol.26, p.210-213.
[5] Somasundaram. S. Ponraj.R and Vidhyarani.P “Geometric mean labeling of graphs” Bulletin of Pure and Applied Sciences 30 E(2) (2011) p.153-160.
S.S.Sandhya, E. Ebin Raja Merly, B. Shiny, "Super Geometric Mean Labeling On Double Triangular Snakes," International Journal of Mathematics Trends and Technology (IJMTT), vol. 17, no. 1, pp. 1-8, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V17P501