Volume 17 | Number 1 | Year 2015 | Article Id. IJMTT-V17P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V17P506
We search for the ranks of Triangular, Pentagonal, Hexagonal number, Heptagonal numbers such that each of these M-gonal number - 3= a perfect square and the ranks of Triangular, Pentagonal, Hexagonal, Heptagonal, Octagonal and Nanogonal such that each of these M-gonal number + 3= a perfect square.
[1] L.E.Dikson, “History of Theory of Numbers”, Chelsa Publishing Company, New York, 2, 1952.
[2] T.S.Bhanumathy, Ancient Indian Mathematics, New Age Publishers Ltd, New Delhi, 1995.
[3] M.A.Gopalan and S.Devibala, “Equality of Triangular Numbers with Special m-gonal numbers”, Bulletin of Allahabad Mathematical Society, 21, 25-29, 2006.
[4] M.A.Gopalan, Manju Somanath and N.Vanitha, “Equality of Centered Hexagonal Number with Special M-Gonal numbers”, Impact J.Sci.Tech.Vol.1(2), 31-34(2007).
[5] M.A.Gopalan, Manju Somanath and N.Vanitha, “M-Gonal number – 1 = A Perfect square”, Acta Cinencia Indica, Vol.XXXIII M, No.2, 479- 480, 2007.
[6] M.A.Gopalan., Manju Somanath, N.Vanitha, “On pairs of m-gonal numbers with unit difference”, Reflections des ERA-JMS, Vol.4, Issue 4, Pp.365-376, 2009.
[7] M.A.Gopalan., K.Geetha and Manju Somanath, “Equality of centered hexagonal number with special M-gonal number”, Global journal of Mathematics and Mathematical Science, Vol.3, No.1, PP.41-45, 2013.
[8] M.A.Gopalan., K.Geetha and Manju Somanath,”On pairs of M-gonal numbers with unit difference”, International Journal of Engineering Science and Mathematics, Vol.2, Issue.2, PP.219-222, June 2013.
M.A.Gopalan, V.Geetha, "M-Gonal number ±3 = A Perfect square," International Journal of Mathematics Trends and Technology (IJMTT), vol. 17, no. 1, pp. 32-35, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V17P506