Volume 17 | Number 1 | Year 2015 | Article Id. IJMTT-V17P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V17P507
H. A. Khalifa, "Solving Fuzzy Linear Programming Problems Using Two-Level Programming Approach," International Journal of Mathematics Trends and Technology (IJMTT), vol. 17, no. 1, pp. 36-50, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V17P507
[1] Bellman, R. E., and Zadeh, L. A., (1970). Decision-making in a fuzzy environment, Management Science, (17): 141-164.
[2] Carlsson, C., and Karhonen, P., (1986). A parametric approach to fuzzy linear programming, Fuzzy Sets and Systems, (2): 17-30.
[3] Chanas, S., (1983). The use of parametric programming fuzzy linear programming, Fuzzy Sets Systems, (11): 243-251.
[4] Dubay, D., Chandra, S., and Mehra, A., (2012). Fuzzy linear programming under interval uncertainty on intuitionistic fuzzy set representation, Fuzzy Sets and Systems, (188): 668-87.
[5] Dubois, D., and Prade, H., (1980). Systems of linear fuzzy constraints, Fuzzy Sets and Systems, (3): 37-48.
[6] Guijun, W., and Xiaoping, L., (1998). The applications of interval-valued fuzzy numbers and interval-distribution numbers, Fuzzy Sets and Systems, (98): 331-335.
[7] Hartley, D. S., (1992). Militray operations research presentation at ORSA/TIMS meetings, Operations Research, (40): 640-646.
[8] Jimenez, M., (2007). Linear programming with fuzzy parameters: An interactive method resolution, European Journal of Operational Research, 177 (3): 1599-1609.
[9] Kaufmann, A., and Gupta, M., M., (1988). Fuzzy Mathematical Models in Engineering and Management Science, Elsevier Science Publishing Company INC., New York.
[10] Kumar, A., and Bhtie, N., (2012). Strict sensitivity analysis for fuzzy linear programming problem, Journal of Fuzzy Set Valued Analysis, (2012), Article IDjfsva-00107, 19 pages.
[11] Lane, M. S., Mansour, A. S., and Harpei, J. L., (1993). Operations research techniques: a longitudinal update 1973-1988, Interfaces, (23): 63-68.
[12] Nasseri, S. H., Ebrahimnejad, A., (2012). A new approach to duality in fuzzy linear programming, Fuzzy Engineering and Operations Research, (147) 17-29.
[13] Nasseri, H., S., Khalili, F., nezhad-T, N., and mortezania, M., S., (2014). A novel approach for solving fully fuzzy linear programming problems using membership function concepts, Annals of Fuzzy mathematics and Informatics, (7): 355-368.
[14] Negoita, C. V., (1970). Fuzziness in management, OPSA/ TIMS, Miami. [15] Qiao, Z., Zang, Y., and Wang, G., (1994). On fuzzy random linear programming, Fuzzy Sets and Systems, (65): 31-49.
[16] Sakawa, M., and Yane, H., (1991). Feasibility and pareto optimality for multiobjective nonlinear programming problems with fuzzy parameters, Fuzzy Sets and Systems, (43): 1-5.
[17] Sanei, M., (2013). The simplex method for solving fuzzy number linear programming problem with bounded variables, Journal of basic and Applied Scientific Research, (3): 618-625.
[18] Shaocheng, T., (1994). Interval number and fuzzy number linear programmings, Fuzzy Sets and Systems, (66): 301-306.
[19] Tanaka, H., and Asal, K., (1984). Fuzzy linear programming problem with fuzzy numbers, Fuzzy Sets and Systems, (13): 1-10.
[20] Tanaka, H., Okude, T., and Asal, K., (1984). On fuzzy mathematical programming, Journal of Cybernet, (3): 37-46.
[21] Veeramani, C., and Duraisamy, C., (2012). Solving fuzzy linear programming problem using symmetric fuzzy number approximation, International Journal of Operational Research, (15): 321-336.
[22] Wang, G., and Qiae, Z., (1993). Linear programming with fuzzy random variable coefficients, Fuzzy Sets and Systems, (57): 295-311.
[23] Zhang, Y. Jie, Y., Chen, D., and yang, Y., (2013). Interior point method for solving fuzzy number linear programming problems using linear ranking function, Journal of Applied mathematics, (23013), Article ID 795098, 9 pages.
[24] Zimmermann, H-J., (1976). Discretion and optimization of fuzzy systems, International Journal of General Systems, (2): 209-215.