Volume 17 | Number 1 | Year 2015 | Article Id. IJMTT-V17P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V17P510
K. Ravi, A. Ponmanaselvan, "On a Composite Functional Equation Related to Abelian Groups," International Journal of Mathematics Trends and Technology (IJMTT), vol. 17, no. 1, pp. 75-81, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V17P510
1. J. Aczel and J. Dhombers, Functional equation in several variables, In: Encyclopedia of Mathematics and its Applications, vol.31. Cambridge University Press, Cambridge, (1989).
2. Aczel, J., Golab, S. Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
3.Aichinger, E., Farag, M. On when the multiplicative center of a near-ring is a subnear-ring, Aequationes Math. 48 (2004), 46-59.
4.Z. Boros and Z. Daroczy, A composite functional equation with additive solutions, Publ. Math. Debrecen 69 (2006), no.1-2, 245-253.
5.Brillouet, N., Dhombres, J. Equations fonctionnelles et recherché de sousgroupes, Aequationes Math. 31 (1986), 253-293.
6.Choa, W. W. Problem 10854. Amer. Math. Monthly 108(2) (2001), 171. 7.A. Gilsnyi and Zs. Pales, A regularity theorem for composite functional equations, Arch. Math. (Basel) 77 (2001), 317 – 322.
8.Golab, S., Schinzel, A. Sur l’equation fonctionnelle f(x+f(x)y)=f(x)f(y), Publ. Math. Debrecen 6 (1959), 113-125.
9.M.E. Gordji, S.K. Gharetapeh, Ch. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Adv. in Difference Equations, 2009, Art. 395693 (2009), 20 pages.
10.M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type additive, quadratic and cubic functional equation in random normed spaces, Filomat 25(3) (2011), 43-54.
11.M.E. Gordji, S. Zolfaghri, J.M. Rassias and M.B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in Quas-Banach spaces, Abstract and Appl. Anal., 2009, Art. 417473, (2009), 14 pages.
12.Henderson, D Continuous additive functions; solutions to problem10854, Amer. Math. Monthly 111(8) (2004), 725-726.
13.Ilse, D., Lehmann, I., Schulz, W. Gruppoide und Funktionalgleichungen. VEB Deutscher Verlag der Wissenschaften, Berlin (1984).
14.S.H. Lee, S.M. IM and I.S. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387-394.
15.Luneburg, H., Plaumann, P. Die Funktionalgleichung von Golab und Schinzel in Galoisfeldern, Arch. Math. (Basel) 28 (1977), 55-59.
16.A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Turk. J. Math. 31 (2007), 395-408.
17.Zs. Pales, A regularity theorem for composite functional equations, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 591-604.
18.Zs. Pales, Regularity problems and results concerning composite functional equations, Tatra Mt. Math. Publication 34 (2006), part II, 289-306.
19.Ch. Park, S.W. Jo and D.Y. Kho, On the stability of an AQCQ-Functional Equation, J. Chungcheong Math. Soc., 22(4) (2009), 757-770.
20.Ch. Park, Fuzzy stability of an Additive-Quadratic-Quartic functional equation, J. Inequ. Appl., 2010 (2010), Art. ID 253040, 22 pp.
21.K. Ravi, J.M. Rassias and P. Narasimman, Stability of a cubic functional equation in fuzzy normed space, J. Appl. Anal. Comp., 1(3) (2011), 411-425.
22.K. Ravi, B.V. Senthil kumar and S. Kandasamy, Solutiona and stability of a mixed type quadratic and additive functional equation in two variables, Int. J. Math. Comp., 13(D11) (2011), 51-68.
23.A. Tarski, Problem no. 83, Parametr 1 (1930), no. 6, 231; Solution: Mlody Matematyk 1 (1931), no. 1, 90 (in polish).
24.Wlodzimierz Fechner, On a composite functional equation on Abelian groups, Aequationes Math.78 (2009), 185-193.