Volume 18 | Number 1 | Year 2015 | Article Id. IJMTT-V18P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V18P505
An edge dominating set D of a fuzzy graph G= (σ, µ) is a split edge dominating set if the induced fuzzy sub graph H= (
[1] Harary, E., 1969. Graph Theory. Addison Wesley, Reading, MA. McAlester, M.L.N., 1988. Fuzzy intersection graphs. Comp. Math. Appl. 15(10), 871-886.
[2] Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998). Domination in Graphs: Advanced Topics, Marcel Dekker Inc. New York, U.S.A.
[3] Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998). Fundamentals of domination in graphs, Marcel Dekker Inc. New York, U.S.A.
[4] Kulli, V.R. and Janakiram B. (1997). The split domination number of graph. Graph Theory notes of New York. New York Academy of Sciences, XXXII, pp. 16-19.
[5] Mahioub.Q.M. and Soner.N.D (2007), “The split domination number of fuzzy graph “Accepted for publication in Far East Journal of Applied Mathematics”.
[6] Ore, O. (1962). Theory of Graphs. American Mathematical Society Colloq. Publi., Providence, RI, 38.
[7] Ponnappan.C.Y.,.Basheer Ahamed.S and Surulinathan.P.,Edge domination in fuzzy graph – new approach, International journal of IT,Engg& Applied sciences Research.Vol 4,No.1,Jan (2015)
[8] Rosenfeld, A., 1975. Fuzzy graphs. In : Zadeh, L.A., Fu, K.S., Shimura, M. (Eds.), Fuzzy Sets and Their Applications. Academic Press, New York.
[9] Somasundaram, A., and Somasundaram, S., Domination in fuzzy graphs-I, Pattern Recognit. Lett. 19(9) 1998), 787-791.
C.Y.Ponnappan, S. Basheer Ahamed, P.Surulinathan, "The Split Edge Domination in Fuzzy Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 18, no. 1, pp. 26-31, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V18P505