Volume 19 | Number 1 | Year 2015 | Article Id. IJMTT-V19P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V19P509
Let G be a graph and f : V(G) →{ 1 ,2, 3 , . . . ,p + q} be an injection. For each edge e = uv, the induced edge labeling f * is defined as follows: Then f is called super mean labeling if f (V(G)) {f *(e) : e E(G)}={1, 2,... ,p+q}. A graph that admits a super mean labeling is called super mean graph.
[1] F. Harary, Graph Theory, Addison-Wesley, Reading Mass., (1972).
[2] A. Nagarajan, R. Vasuki and S. Arockiaraj, Super mean number of a graph, Kragujevac Journal of Mathematics, 36(1) (2012), 61-75.
[3] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combin, 112 (2013), 65-72.
[4] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[5] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International J. Math. Combin., 3 (2009), 82-96.
[6] R. Vasuki and A. Nagarajan, On the const ruction of new classes of super mean graphs, Journal of Discrete Mathematical Sciences & Cryptography, 13(3) (2010), 277-290.
[7] R. Vasuki and A. Nagarajan, Further results on super mean graphs, Journal of Discrete Mathematical Sciences & Cryptography, 14(2) (2011), 193-206.
[8] R. Vasuki and S. Arockiaraj, On super mean graphs, Util. Math., (To appear).
[9] R. Vasuki and A. Nagarajan, Meanness of the graphs Pa,b and Pb a, International Journal of Applied Mathematics, 22(4) (2009), 663-675.
[10] R. Vasuki and A. Nagarajan, On the Meanness of Arbitrary path super subdivision of paths, Australasian Journal of Combinatories, 51 (2011), 41-48 .
P. Sugirtha, R. Vasuki and J. Venkateswari, "Some New Super Mean Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 19, no. 1, pp. 62-73, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V19P509