Volume 19 | Number 2 | Year 2015 | Article Id. IJMTT-V19P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V19P517
Khinal Parmar, "Study of Henstock-Kurzweil integrals," International Journal of Mathematics Trends and Technology (IJMTT), vol. 19, no. 2, pp. 130-135, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V19P517
[1] Gordon R.,Real Analysis: A First Course, 2nd edition, Addison-Wesley Higher Mathematics.
[2] Katz V.,A History of Mathematics: An Introduction, 3rd edition, Addison-Wesley Higher Mathematics.
[3] Lee Tuo Yeong,Henstock-Kurzweil Integration on Euclidean Spaces, World Scientific Publishing Co Pte Ltd.
[4] Bartle R. G. and Sherbert D.,Introduction to Real Analysis - Third edition, John Wiley and Sons, New York.
[5] Lang Searge,Analysis I, Addison-Wesley Publishing Company, New York.
[6] Lee Peng Yee,Lanzhou Lectures on Henstock Integration, World Scientific Publishing Co Pte Ltd.
[7] Lee Peng Yee and Rudolf Výborný,Integral: An easy approach after Kurzweil and Henstock, Cambridge University Press.
[8] Ma Zheng Min and Lee Peng Yee, An overview of classical integration theory
[9] Anil Pedgaonkar, Fundamental theorem of calculus for Henstock -Kurzweil integral, Bulletin of the Marathwada Mathematical Society Vol. 14, No. 1, June 2013, Pages 71-80.
[10] Jonathan Wells, Generalizations of the Riemann Integral: An Investigation of the Henstock Integral