Volume 19 | Number 3 | Year 2015 | Article Id. IJMTT-V19P523 | DOI : https://doi.org/10.14445/22315373/IJMTT-V19P523
Raghbir Dyal, "A Brief Study on Paradox in Transportation Problem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 19, no. 3, pp. 185-188, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V19P523
[1] Arora, S., Puri, M.C.(1997) On lexicographic optimal solutions in transportation problem. Optimization 39, 383-403.
[2] Arora, S., Puri, M.C.(2001) On a standard time transportation problem. ASOR Bulletin 20, 2-14.
[3] Bansal, S., Puri, M.C.(1980) A min max problem. ZOR 24, 191-200.
[4] Bhatia, H.L., Swarup, K. Puri, M.C. (1977) A procedure for time minimizing transportation problem. Indian Journal of Pure and Applied Mathematics 8, 920-929.
[5] Dantzig, G. B. (1951). Linear Programming and Extensions. Princeton,NJ:Princeton University Press.
[6] Gupta, A. Khanna S. Puri, M. C. (1993). A Paradox in Linear Transportation Problems. Optimization. 27, 375-387
[7] Hitchcock FL (1941) The Distribution of a product from several sources to numerous localities. J. Math. Phy. 20: 224- 230.