Volume 20 | Number 1 | Year 2015 | Article Id. IJMTT-V20P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V20P501
We prove eight theorems for the continuity of Gabor Frame operators defied on weighted Wiener amalgam spaces, which generalize the corresponding results of Walnut (1992) on
[1] I. Daubechies. The Wavelet transforms time-frequency localizatioin and singnal analysis. IEEE Trans. Tnform. Theory 39(1990), 961-1005.
[2] R. J. Duffin and A. C. Scharffer. A Class of non-harmonic Fourier Series. Trans. Amer. Math. Soc. 72 (1952), 341-366.
[3] H. G. Feichtinger. Banach Convolution Algebras of Wieners Type Proc. Conf. "Functios, Series, Operators", Budpest, 1980.
[4] H. G. Feichtinger and K. Gröchenig. Banach Spaces Related to Interable Group Representations and their Atomic Decompositions I.J.Manatsh. Math. 86(1989), 307-340.
[5] H. G. Feichtinger and T Ströhmer. Gabor Analysis And Alogorthms: Theory And Aapplications.Birkhaüser,Boston,1998.
[6] D. Gabor. Theory of Communication. J. IEE (London) 93 (III) (1946), 429-457.
Mr. Vishad Tiwari, Dr. J.K. Maitra, Dr. Ashish Kumar, "Continuity of Gabor Frame Operators On Weighted Wiener Amalgam Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 20, no. 1, pp. 1-6, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V20P501