Volume 20 | Number 1 | Year 2015 | Article Id. IJMTT-V20P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V20P503
The main purpose of this paper is to introduce and study the notion of supra M-topological spaces. Moreover, the notions of supra -operation, supra pre open msets, supra -open msets, supra semi open msets, supra -open msets and supra b -open msets are presented. The current notion is a generalization of the notion in [7]. The properties of the present notion are studied and the relationships between them are given. The importance of this approach is that, the class of supra M-topological spaces is wider and more general than the class of M-topological spaces.
[1] Blizard, Wayne D., Multiset theory, Notre Dame Journal of Formal Logic 30 (1989 a) 36-66.
[2] Blizard, Wayne D., Real-valued multisets and fuzzy sets, Fuzzy Sets and Systems 33 (1989 b) 77-97.
[3] Blizard, Wayne D., The development of multiset theory, Modern Logic 1 (1991) 319-352.
[4] Clements, G. F., On multiset k-families, Discrete Mathematics 69 (1988) 153-164.
[5] Conder, M., S. Marshall and Arkadii M. Slinko, Orders on multisets and discrete cones, A Journal on the Theory of Ordered Sets and its Applications 24 (2007) 277-296.
[6] Devi, R., S. Sampathkumar and M. Caldas, On supra -open sets and S -continuous functions, General Mathematics 16 (2008) 77-84.
[7] El-Sheikh, S. A., R. A-K. Omar and M. Raafat, -operation in M-topological space, Gen. Math. Notes, preprint.
[8] Girish, K. P. and Sunil Jacob John, Relations and functions in multiset context, Information Sciences 179 (2009) 758-768.
[9] Girish, K. P. and Sunil Jacob John, Rough multisets and information multisystems, Advances in Decision Sciences (2011) 1-17.
[10] Girish, K. P. and Sunil Jacob John, Multiset topologies induced by multiset relations, Information Sciences 188 (2012) 298-313.
[11] Girish, K. P. and Sunil Jacob John, On Multiset Topologies, Theory and Applications of Mathematics & Computer Science, 2 (2012) 37-52.
[12] Jena, S. P. , S. K. Ghosh and B. K. Tripathy, On the theory of bags and lists,Information Sciences 132 (2001) 241-254.
[13] Mahanta, J. and D. Das, Semi-compactness in multiset topology, arXiv 1403.5642v1, (2014).
[14] Mashhour, A. S., A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological space, Indian J. Pure Appl. Math. 14 (1983) 502-510.
[15] Sayed, O.R. and Takashi Noiri, On supra b -open sets and supra b -continuity on topological spaces, European Journal of Pure and Applied Mathematics 3 (2010) 295-302.
[16] Singh, D., A note on the development of multiset theory, Modern Logic 4 (1994) 405-406.
[17] Singh, D. and J. N. Singh, Some combinatorics of multisets, International Journal of Mathematical Education in Science and Technology 34 (2003) 489-499.
[18] Singh, D., A. M. Ibrahim, T. Yohana and J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math. 37 (2007) 73-92.
[19] Singh, D., A. M. Ibrahim, T. Yohana and J. N. Singh, Complementation in multiset theory, International Mathematical Forum 6 (2011) 1877-1884.
[20] Slapal, Josef, Relations and topologies, Czechoslovak Mathematical Journal 43 (1993) 141-150.
[21] Yagerm, R. R., On the theory of bags, Int. General Syst. 13 (1986) 23-37.
[22] Wildberger, N. J., A new look at multisets, University of New South Wales, Sydney, Australia (2003) 1-21.
S. A. El-Sheikh, R. A-K. Omar, M. Raafat, "Supra M-topological space and decompositions of some types of supra msets," International Journal of Mathematics Trends and Technology (IJMTT), vol. 20, no. 1, pp. 11-24, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V20P503