Volume 21 | Number 1 | Year 2015 | Article Id. IJMTT-V21P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V21P501
Let G = Rno Rm be the Lie group, which is the semi-direct product of the real vector group Rn and Rm, 1 m n: Let U be the complexi ed universal enveloping algebra of the real Lie algebra g of G: The purpose of this paper is to give a characterization of the all ideals of the group algebra L1(G) of G. Besides, we prove some existence theorems for U.
[1] M. F. Atiyah, (1970), Resolution of Singularities and Division of Distri- butions, Comm.on Pure and App. Math, Vol, 23, 145-150.
[2] K. El- Hussein, (2009), Eigendistributions for the Invariant Di¤erential operators on the A¢ ne Group. Int. Journal of Math. Analysis, Vol. 3, no. 9, 419-429.
[3] K. El- Hussein, A Fundamental Solution of an Invariant Di¤erential Operator on the Heisenberg Group, Mathematical Forum, 4, (2009), no. 12, 601 - 612.
[4] K. El- Hussein, (2010), Note on the Solvability of the Lewy Operator, International Mathematical Forum, 5, no. 8, 389 - 393..
[5] K. El- Hussein, ( 2011), On the left ideals of group algebra on the a¢ ne group, Int. Math Forum, Int, Math. Forum 6, No. 1-4, 193-202.
[6] K. El- Hussein, (2014), Abstract Harmonic Analysis on Spacetime, arXiv:1404.1600v1 [math-ph] 6 Apr.
[7] Harish-Chandra, (1952), Plancherel formula for 2 2 real unimodular group, Proc. nat. Acad. Sci. U.S.A., vol. 38, pp. 337-342.
[8] Harish-Chandra, (1952), The Plancherel formula for complex semi- simple Lie group, Trans. Amer. Mth. Soc., vol. 76, pp. 485- 528.
[9] S. Helgason, (2005), The Abel, Fourier and Radon Transforms on Sym- metric Spaces. Indagationes Mathematicae. 16, 531-551.
[10] L. Hormander, 1983, The analysis of Linear Partial Di¤erential Operator I, Springer-Verlag, 1983.
[11] Kirillov, A. A., ed, (1994), Representation Theory and Noncommutative Harmonic Analysis I, Springer- Verlag, Berlin.
[12] Okamoto, K, (1965), On The Plancherel Formulas For Some Types of Simple Lie Groups, Osaka J. Math. 2, 247-282.
[13] W.Rudin., (1962), Fourier Analysis on Groups, Interscience Publishers, New York, NY..
[14] F. Treves, Linear Partial Differential Equations with Constant Coe¢ - cients, Gordon and Breach, (1966)..
[15] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Prentice Hall. Engle-wood Cli¤s, New Jersey, (1974).
[16] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, INC, New York, (1973)..
Kahar El-Hussein, Badahi Ould Mohamed, "Classification of All Ideals of the Group Algebra of Some Lie Groups," International Journal of Mathematics Trends and Technology (IJMTT), vol. 21, no. 1, pp. 1-15, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V21P501