Volume 21 | Number 1 | Year 2015 | Article Id. IJMTT-V21P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V21P504
Prakash N. Kamble, "FLC Modeling of Classical EEG Signals Model using the Technique of TSK - Fuzzy Inference Rules and its Generalization," International Journal of Mathematics Trends and Technology (IJMTT), vol. 21, no. 1, pp. 31-41, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V21P504
(1) George J. Klir and Bo Yuan, Fuzzy sets and fuzzy logic (Theory and applications), PHI, New Delhi, 2006.
(2) John Yen and Reza Langari, Fuzzy Logic (Intelligence, Control and Information), Pearson Education, 1999.
(3) Kamble P.N., Mherotra S.C and Dhakne M.B., Superiority Of Fuzzy Controllers over Mathematical Modeling of EEG Signals, Proceedings Of The International Conference On Mathematical Sciences In Honour of A. M. Mathai, pp. 175- 190, January- 2011.
(4) Kamble P.N., Mherotra S.C and Dhakne M.B., TSK - fuzzy Controlled Modeling via Classical Mathematical EEG Signals Modeling, International Journal of Mathematical Archive, PP.147-154, October, 2013.
(5) Kazuo Tanaka, An introduction to fuzzy logic for practical applications, Springer, 1997.
(6) Metin Akay, Editor, Nonlinear Biomedical Signal processing Volume - I (Fuzzy Logic, Neural Networks and New Algorithms), IEEE press products, 2000
(7) Saeid Sanei and J. A. Chambers, EEG signal processing, John Wiley and sons Ltd, 2007.
(8) Simulator for Neural Networks and Action potentials (SNNAP) Tutorial, The University of Texas-Houston Medical School, 2003,http//snap.uth.tmc.edu.
(9) Terrance J. Senijnowski Towardas, Brain computer Interfacing, The MIT Press Cambridge, London, England, 2007.