Volume 24 | Number 1 | Year 2015 | Article Id. IJMTT-V24P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V24P507
In the present work we introduce new subclasses S λ,α
m (b, l, β), R λ,α m (b, l, β; µ), S λ,α
m (b, l, σ, β) and R λ,αm (b, l, σ, β; µ) of
analytic functions defined using differential operator and discuss certain
neighborhood properties.
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sˇalˇagean operator, Internat. J. Math. and Math. Sci., 27, 1429 - 1436, 2004.
[2] A. Catas, On certain classes of p -valent functions defined by multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications, Istabul, Turkey, 2007.
[3] N. E. Cho and T. H. Kim, Multiplier transformation and strongly close - to - convex functions, Bull. Korean. Math. Soc., 40, 399 - 410, 2003.
[4] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Compt. Modelling., 37 (1 - 2), 39 - 49, 2003.
[5] S. Latha, A note on generalized integral and differential operator (communicated for publication).
[6] Maslina Darus and Rabha W Ibrahim, On new subclasses of analytic functions involving generalized differential and integral operators, European Journal of Pure and Applied mathematics, Vol. 4, No. 1, 59 - 66, 2011.
[7] S. Ruscheweyh , Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81, 521-527, 1981.
[8] G. S. Sˇalˇagean, Subclasses of univalent functions, Lecture notes in Math. Springer - Verlag, Berlin, 1013, 362-372, 1983. Bull. Korean. Math. Soc., 43, 589 - 598, 2006.
[9] B. A. Uralegaddi, C. Somanatha , Certain classes of univalent functions, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 371 - 374, 1992.
N. Shilpa, S.Latha, "On Neighborhoods of Subclasses of Analytic Functions Defined using Differential Operator," International Journal of Mathematics Trends and Technology (IJMTT), vol. 24, no. 1, pp. 54-63, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V24P507