Volume 24 | Number 1 | Year 2015 | Article Id. IJMTT-V24P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V24P508
S. Sekar, A. Kavitha, "Numerical Solutions of the Harmonic Oscillators using Adomian Decomposition Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 24, no. 1, pp. 64-66, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V24P508
[1] G. Adomian, “Solving Frontier Problems of Physics: Decomposition method”, Kluwer, Boston, MA, 1994.
[2] Blanchard, Olivier and Charles Kahn, “The Solution of Linear Difference Models under Rational Expectations,” Econometrica 45, July 1985, pp. 1305-1311.
[3] J. C. Butcher, “The Numerical Methods for Ordinary Differential Equations”, 2003, John Wiley & Sons, U.K.
[4] S. Sekar and A. Kavitha, “Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 121, pp. 6011-6018, 2014.
[5] S. Sekar and A. Kavitha, “Analysis of the linear timeinvariant Electronic Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 10-13, 2015.
[6] S. Sekar, A. Manonmani and E. Paramanathan, “Numerical Strategy of the Harmonic oscillators using single-term Haar wavelet series”, Elixir Applied Mathematics online Journal, vol. 38, pp. 4228-4231, 2011.
[7] S. Sekar and M. Nalini, “Numerical Analysis of Different Second Order Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 77, pp. 3825-3832, 2014.
[8] S. Sekar and M. Nalini, “Numerical Investigation of Higher Order Nonlinear Problem in the Calculus of Variations Using Adomian Decomposition Method”, IOSR Journal of Mathematics, vol. 11, no. 1 Ver. II, (Jan-Feb. 2015), pp. 74- 77.
[9] S. Sekar and M. Nalini, “A Study on linear time-invariant Transistor Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 1-3, 2015.