Volume 25 | Number 1 | Year 2015 | Article Id. IJMTT-V25P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V25P501
The Adomian Decomposition Method (ADM) is used to analysis the nonlinear singular systems of time-invariant and time-varying cases [14]. The obtained discrete solutions using ADM and Single-term Haar wavelet series (STHW) are compared with the exact solutions of the nonlinear singular systems of time-invariant and time-varying cases. It is found that the solution obtained using ADM is closer to the exact solutions of the nonlinear singular systems of time-invariant and time-varying cases. Error graphs for discrete and exact solutions are presented in a graphical form to highlight the efficiency of this method. This ADM can be easily implemented in a digital computer and the solution can be obtained for any length of time.
[1] G. Adomian, “Solving Frontier Problems of Physics: Decomposition method”, Kluwer, Boston, MA, 1994.
[2] J. C. Butcher, “The Numerical Methods for Ordinary Differential Equations”, 2003, John Wiley & Sons, U.K.
[3] S. L. Campbell, Singular systems of differential equations, Pitman, London, (1980).
[4] S. L. Campbell, Singular systems of differential equations II, Pitman, London. (1982).
[5] S. L. Campbell, “Bilinear nonlinear descriptor control systems”, CRSC Tech. Rept. 102386-01, Department of Mathematics, N. C. State University, Raleigh, (1987) NC 27695.
[6] S. L. Campbell and J. Rodriguez, “Non-linear singular systems and contraction mappings”, Proceedings of the American Control Conference, (1984), 1513-1519.
[7] S. L. Campbell and L. R. Petzold, “Canonical forms and solvable singular systems of differential equations”, SIAM J. Algebraic and Discrete Methods, 4, (1983), 517-521.
[8] C. H. Hsiao and W. J. Wang, “State analysis of time-varying singular nonlinear systems via Haar wavelets”, Math. Comp. Simulation, 51, (1999), 91-100.
[9] F. L. Lewis, B. C. Mertzios and W. Marszalek, “Analysis of singular bilinear systems using Walsh functions”, IEE Proc. Pt. D., 138, (1991), 89-92.
[10] F. L. Lewis, “Geometric design techniques for observers in singular systems”, Automatica, 26, (1990), 411-415.
[11] J. Y. Lin and Z. H. Yang, “Existence and uniqueness of solutions for non-linear singular (descriptor) systems”, Int. J. Systems Sci., 19, (1988), 2179-2184.
[12] S. Sekar and A. Kavitha, “Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 121, pp. 6011-6018, 2014.
[13] S. Sekar and A. Kavitha, “Analysis of the linear timeinvariant Electronic Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 10-13, 2015.
[14] S. Sekar and A. Manonmani, “A study on time-varying singular nonlinear systems via single-term Haar wavelet series”, International Review of Pure and Applied Mathematics (IRPAM), Vol. 5, No. 2, 2009, pp. 371-377.
[15] S. Sekar and M. Nalini, “Numerical Analysis of Different Second Order Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 77, pp. 3825-3832, 2014.
[16] S. Sekar and M. Nalini, “Numerical Investigation of Higher Order Nonlinear Problem in the Calculus of Variations Using Adomian Decomposition Method”, IOSR Journal of Mathematics, vol. 11, no. 1 Ver. II, (Jan-Feb. 2015), pp. 74- 77.
[17] S. Sekar and M. Nalini, “A Study on linear time-invariant Transistor Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 1-3, 2015.
[18] B. Sepehrian and M. Razzaghi, “Solution of time-varying singular nonlinear systems by Single-Term Walsh Series”, Math. Prob. in Engg., 3, (2003), 129-136.
[19] Wiener, N., Cybermetics, MIT Press, Cambridge, (1948).
S. Sekar, M. Nalini, "Analysis of the Nonlinear Singular Systems using Adomian Decomposition Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 25, no. 1, pp. 1-4, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V25P501