Volume 25 | Number 1 | Year 2015 | Article Id. IJMTT-V25P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V25P507

The heat transport at microscale is vital important in the field of micro-technology. In this paper heat transport in a two-dimensional thin plate based on dual-phase-lagging (DPL) heat conduction model is investigated. The solution was obtained with the help of superposition techniques and solution structure theorem. . The whole analysis is presented in dimensionless form. A numerical example of particular interest has been studied and discussed in details.

[1] C. Cattaneo, “Sur une forme de I'Equation de la chaleur elinant le paradox d'une propagation instantance,” C. R. Acad. Sci., vol. 247, pp. 431-433, 1958.

[2] M. P. Vernotte, “Les paradoxes de la theorie continue de I’ equation de la chleur,” C. R. Acad. Sci., vol. 246, pp. 3154- 3155, 1958.

[3] D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, 1996.

[4] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys., vol. 93, pp. 793-818, 2003.

[5] A. A. Joshi, and A. Majumdar, “Transient ballistic and diffusive phonon heat transport in thin films,” J. Appl. Phys., vol. 74, pp. 31-39, 1993.

[6] C. L. Tien, A. Majumdar, and F. M. Gerner, Microscale Energy Transport, Taylor & Francis, Washington, 1998.

[7] L. Q. Wang, X. Zhou, and X. Wei, Heat Conduction: Mathematical Models and Analytical solutions, Springer- Verlag, Berlin, 2008.

[8] D. D. Joseph, and L. Preziosi, “Heat waves,” Rev. Mod. Phys., vol. 61, pp. 41-73, 1989.

[9] M. N. Ozisik, and D. Y. Tzou, “On the wave theory in heat conduction,” ASME J. Heat Transfer, vol. 116(3), pp. 526- 535, 1994.

[10] D. Y. Tzou, “Thermal shock phenomena under high rate response in solids,” Annual Review of Heat Transfer, vol. 4, pp. 111-185, 1992.

[11] D. Y. Tzou, “Shock wave formation around a moving heat in a solid with finite speed of heat propagation,” Int. J. Heat Mass Transfer, vol. 32, pp. 1979-1987, 1989.

[12] D. Y. Tzou, “Thermal shock wave induced by a moving crack,” ASME J. Heat Transfer, vol. 112, pp. 21-27, 1990.

[13] D. Y. Tzou, “Thermal shock waves induced by a moving crack-a heat flux formulation,” Int. J. Heat Mass Transfer, vol. 33, pp. 877-885, 1990.

[14] D. Y. Tzou, “On thermal shock waves induced by a moving heat source,” ASME J. Heat Transfer, vol. 111, pp. 232-238, 1989.

[15] T. Q. Que, and C. L. Tien, “Short-pulse heating on metals,” Int. J. Heat Mass Transfer, vol. 35, pp. 719-726, 1992.

[16] T. Q. Que, and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer, vol. 115, pp. 835-841, 1993.

[17] S. H. Chan, M. J. D. Low, and W. K. Mueller, “Hyperbolic heat conduction in catalytic crystallites,” AIChE J., vol. 17, pp. 1499-1501, 1971.

[18] A. Majumdar, “Microscale heat conduction in dielectric thin films,” ASME J. Heat Transfer, vol. 115(1), pp. 7-16, 1992.

[19] J. K. Chen, J. E. Beraun, and D. Y. Tzou, “A dual-phase-lag diffusion model for predicting thin film growth,” Semicond. Sci. Technol., vol. 15, pp. 235-241, 2000.

[20] J. K. Chen, J. E. Beraun, and D.Y. Tzou, “Numerical investigation of ultra-short laser damage in semiconductors,” Int. J. Heat Mass Transfer, vol. 48 (3-4), pp. 501-509, 2005.

[21] D. Y. Tzou, “A unified field approaches for heat conduction from micro to macroscale,” J. Heat Transfer, vol. 117, pp. 8- 16, 1995.

[22] P. K. Srimani, and R. Parthasarathi, “An analytical investigation of steady convection in an active mushy layer,” Int. J. Mathematics Trends and Technology, vol. 23 (1), pp. 62-70, July 2015.

[23] J. K. Chen, J. E. Beraun, and D. Y. Tzou, “A dual-phase-lag diffusion model for interfacial layer growth in metal matrix composites,” J. Mater. Sci., vol. 34, pp. 6183-6187, 1999.

[24] J. K. Chen, J. E. Beraun, and D. Y. Tzou, “A dual-phase-lag diffusion model for predicting intermetallic compound layer growth in solder joints,” ASME J Heat Transfer, vol. 123, pp. 52-57, 2001.

[25] M. A. Al-Nimr, M. Naji, and V. S. Arbaci, “Nonequilibrium entropy production under the effect of the dual-phase-lag heat conduction model,” ASME J Heat Transfer, vol. 122, pp. 217-223, 2000.

[26] C. K. Lin, C. C Hwang, and Y. P. Chang, “The unsteady solutions of a unified heat conduction equation,” Int. J. Heat Mass Transfer, vol. 40, pp. 1716-1719, 1997.

[27] A. N. Smith, J. L. Hostetler, and P. M. Norris, “Nonequilibrium heating in metal films: an analytical and numerical analysis,” Numerical Heat Transfer Part A, vol. 35, pp. 859-873, 1999.

[28] D. W. Tang, and N. Araki, “Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses,” Int. J. Heat Mass Transfer, vol. 42, pp. 899- 860, 1999.

[29] V. V. Kulish, and V. B. Novozhilov, “An integral equation for the dual-lag model of heat transfer,” ASME J. Heat Transfer, vol. 126, pp. 805-808, 2004.

[30] Y. Liu, F. Zong, and L. Zheng, “The analysis solutions for two-dimensional fractional diffusion equations with variable coefficients,” Int. J. Mathematics Trends and Technology, vol. 5, pp. 60-66, January 2014.

[31] T. T. Lam, and E. Fong, “Application of solution structure theorems to non-Fourier heat conduction problems: analytical approach,” Int. J. Heat Mass Transfer, vol. 54(23-24), pp. 4796-4806, 2011.

[32] T. T. Lam, “A unified solution of several heat conduction models,” Int. J. Heat Mass Transfer, vol. 56, pp. 653-666, 2013.

[33] M. N. Ozisik, Heat Conduction, John Wiley & Sons, New York, 1993.

[34] L. Q. Wang, “Solution structure theorem of hyperbolic heat conduction equation,” Int. J. Heat Mass Transfer, vol. 43(21), pp. 365-373, 2000.

[35] L. Wang, M. Xu, and X. Zhou, “Well-posedness and solution structure theorem of dual-phase-lagging heat conduction,” Int. J. Heat Mass Transfer, vol. 44, 1659-1669, 2001.

T. N. Mishra, "Analytical Solution of 2D Dual-Phase-Lagging Heat Conduction Model," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 25, no. 1, pp. 35-40, 2015. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V25P507