Volume 25 | Number 2 | Year 2015 | Article Id. IJMTT-V25P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V25P511
Tiyaonse Chisanga Kabwe, "Introducing a New Standard Formula for Finding Prime Numbers," International Journal of Mathematics Trends and Technology (IJMTT), vol. 25, no. 2, pp. 59-109, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V25P511
[1] Abdelnoor R.E, Jason, A mathematical Dictionary Wheaton A. Weaton and Company Limited A division of programme press, Hennockon Road, Exeter Ex28RP (1979).
[2] Borowski E.J. and J.M. Borwein, The Dictionary of Mathematics, Collins London and Glasgow (1989).
[3] Caldwell Chris K. Caldwell@utm.edu.
[4] Dictionary of Mathematics, Second Edition MacCraw-Hill Staff, MacCraw-Hill Professional Publishing (01/2003).
[5] Kabwe Chisanga Tiyaonse (March 15, 2012), Revelations on Prime Numbers A Pre-publication, Tiyaonse Kabwe, Lusaka, Zambia.
[6] Larson, Kanold, Stiff (1998), Algebra 1, An integrated Approach, Health and Company, A division of Houghton Mifflin Company, Canada.
[7] Margaret L. Lial and John Hornsby, Begging Algebra, Eighth Edition, Addisson Wesley Longman Inc, England (2000).
[8] Random-definition of random @your dictionary.com
[9] Scottish Mathematics Group, Modern Mathematics for schools, Second Edition. Blackie and Son limited Bishopbriggs. Glasgow G642NZ London WC2H 7BP (1972)
[10] Scottish Mathematics Group, 1 Modern Mathematics for Schools, Second Edition, Blackie and Son Limited, London, 1971.
[11] (http://en.wikipedia.org/wiki/prime_number)
[12] http://www.mersenne.org/default.php
[13] http://primes.utm.edu/largest.html
[14] http://primes.utm.edu/notes/proofs/infinite/
[15] http://primes.utmn.edu/notes/proofs/infinite/euclids.html
[16] http://primes.utm.edu/glossary/page.php?sort=FundamentalTheo rem
[17] http://primes.utm.edu/glossary/xpage/Divisor.html