Volume 26 | Number 1 | Year 2015 | Article Id. IJMTT-V26P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V26P506
S. Sekar, M. Vijayarakavan, "Numerical treatment of Periodic and Oscillatory Problems Using Leapfrog Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 26, no. 1, pp. 24-28, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V26P506
[1] J. C. Butcher, “The Numerical Methods for Ordinary Differential Equations”, 2003, John Wiley & Sons, U.K.
[2] Y. Fang, Y. Song and X. Wu, “A robust trigonometrically fitted embedded pair for perturbed oscillators”, J. Comput. Appl. Math., 225 (2009) 347-355.
[3] J. M. Franco, “Runge-Kutta-Nystrom methods adapted to the numerical integration of perturbed oscillators”, Comput. Phys. Comm., 147 (2002) 770-787.
[4] E. Hairer and G. Wanner, “Solving Ordinary Differential Equations II”, Springer, New York, 1996.
[5] E. Hairer,” A One-step Method of Order 10 for y00 = f(x; y)”, IMA J. Numer. Anal. 2, (1982) 83-94.
[6] S. N. Jator, S. Swindle, and R. French, ” Trigonometrically fitted block Numerov type method for y00 = f(x; y; y0)”, Numerical Algorithms, (2012), DOI 10.1007/s11075-012-9562-1.
[7] J. D. Lambert, ”Numerical methods for ordinary differential systems”, John Wiley, New York, 1991.
[8] J. D. Lambert, ”Computational methods in ordinary differential equations”, John Wiley, New York, 1973.
[9] H. S. Nguyen, R. B. Sidje and N. H. Cong, “Analysis of trigonometric implicit Runge-Kutta methods”, J. Comput. Appl. Math. 198 (2007) 187-207.
[10] S. Sekar and E. Paramanathan, “A study on periodic and oscillatory problems using single-term Haar wavelet series”, International Journal of Current Research, vol. 2, no 1, 2011, pp. 097-105.
[11] S. Sekar and K. Prabhavathi, “Numerical solution of first order linear fuzzy differential equations using Leapfrog method”, IOSR Journal of Mathematics, vol. 10, no. 5 Ver. I, (Sep-Oct. 2014), pp. 07-12.
[12] S. Sekar and K. Prabhavathi, “Numerical Solution of Second Order Fuzzy Differential Equations by Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 16, no. 2, 2014, pp. 74-78.
[13] S. Sekar and K. Prabhavathi, “Numerical Strategies for the nth –order fuzzy differential equations by Leapfrog Method”, International Journal of Mathematical Archive, vol. 6, no. 1, 2014, pp. 162-168.
[14] S. Sekar and M. Vijayarakavan, “Numerical Investigation of first order linear Singular Systems using Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 12, no. 2, 2014, pp. 89-93.
[15] S. Sekar and M. Vijayarakavan, “Numerical Solution of Stiff Delay and Singular Delay Systems using Leapfrog Method”, International Journal of Scientific & Engineering Research, vol. 5, no. 12, December-2014, pp. 1250-1253.
[16] T. E. Simos,” An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions”, Comput. Phys. Commun. 115 (1998) 1-8.
[17] B. P. Sommeijer, ” Explicit, high-order Runge-Kutta-Nystrom methods for parallel computers”, Appl. Numer. Math. 13 (1993) 221-240.
[18] G. Vanden, L. Gr. Ixaru, and M. van Daele, “Optimal implicit exponentially-fitted Runge-Kutta”, Comput. Phys. Commun. 140 (2001) 346-357.