Volume 27 | Number 1 | Year 2015 | Article Id. IJMTT-V27P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V27P501
Let G = (V, E) be a simple undirected graph. A subset D of V(G) is said to be dominating set if every vertex of V(G) − D is adjacent to at least one vertex in D. The minimum cardinality taken over all minimal dominating sets of G is the domination number of G and is denoted by g(G). The domination uniform subdivision number of G is the least positive integer k such that the subdivision of any k edges from G results in a graph having domination number greater than that of G and is denoted by usdg(G). In this paper, we investigate the domination uniform subdivision number of standard graphs. Also we determine the bounds of usdg and characterize the extremal graphs.
[1] Abdollah Khodkar, B. P. Mobaraky and S. M. Sheik- holeslami, Upper Bound for the Roman Domination Subdivision number of a Graph, AKCE J. Graphs Combin., 5 (2008), 7-14.
[2] Amitava Bhattacharya and Gurusamy Rengasamy Vi- jayakumar, Effect of Edge-Subdivision on Vertex-Domination in a Graph, Discussiones Mathematicae Graph Theory, 22(2002) 335-347.
[3] H. Aram, O. Favaron and S. m. Sheikholeslami, Domination Subdivision Number of Trees, Discrete Mathematics, 309 (2009), 622-628.
[4] M. Atapour, S. M. Sheikholeslami, A. Hansberg, L. Volk- mann and A. Khodkar, 2-Domination Subdivision Number of Graphs, AKCE J. Graphs Combin., 5 (2008), No. 2, 165-173.
[5] Gary Chartrand, Ping Zhang, Introduction to Graph Theory , Tata McGraw-Hill Edition, 2006.
[6] T.W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Ja- cobs, J. Knisely and L. C. Van der Merwe, Domination Subdivision Numbers, Discussiones Mathematicae Graph The- ory, 21 (2001), 239-253.
[7] J. Paulraj joseph and S. Arumugam, Domination in Subdivision Graphs, J. Indian Math. Soc., 62(1996), 274-282.
[8] S.S.Sandhya, E. Ebin Raja Merly and B. Shiny, Subdivision of Super GeometricMean Labeling for Quadrilateral Snake Graphs, Int. J. Math. Trends and Tech., Vol. 24, No. 1 - Au- gust 2015.
[9] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
[10] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph. D. Thesis, 1997.
M. K. Angel Jebitha, "Domination Uniform Subdivision Number of Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 27, no. 1, pp. 1-5, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V27P501