Volume 27 | Number 1 | Year 2015 | Article Id. IJMTT-V27P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V27P505
S. Kaunanithi, S. Chakravarthy, S. Sekar, "A Study on unsteady one-dimensional heat flow problem using Rayleigh Ritz, Single-term Walsh series and Leapfrog Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 27, no. 1, pp. 25-30, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V27P505
[1] S. Karunanithi, S. Chakravarthy and S. Sekar, “Comparison of Leapfrog and single term Haar wavelet series method to solve the second order linear system with singular-A”, Journal of Mathematical and Computational Sciences, vol. 4, no. 4, 2014, pp. 804-816.
[2] S. Karunanithi, S. Chakravarthy and S. Sekar, “A Study on Second-Order Linear Singular Systems using Leapfrog Method”, International Journal of Scientific & Engineering Research, vol. 5, issue 8, August-2014, pp. 747-750.
[3] K. Murugesan, Paul Dhayabaran and D.J. Evans, “Analysis of different second order multivariable linear system using single term Walsh series technique and Runge-Kutta method”, Int. J. Comp. Math., vol. 72, 1999, pp. 367-374.
[4] R. S. Schechter, “The variational methods in engineering”, Mc-Graw Hill, New York, 1967.
[5] S. Sekar, R. Muthukrishnan and S. Subbulakshmi, “Numerical investigation of the heat flow problem using Rayleigh Ritz, STWS and Runge-Kutta methods based on various means”, International Journal of Current Research, vol. 3, issue 12, 2011, pp. 142-148.
[6] S. Sekar and K. Prabhavathi, “Numerical solution of first order linear fuzzy differential equations using Leapfrog method”, IOSR Journal of Mathematics, vol. 10, no. 5 Ver. I, (Sep-Oct. 2014), pp. 07-12.
[7] S. Sekar and K. Prabhavathi, “Numerical Solution of Second Order Fuzzy Differential Equations by Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 16, no. 2, 2014, pp. 74-78.
[8] S. Sekar and K. Prabhavathi, “Numerical Strategies for the nth –order fuzzy differential equations by Leapfrog Method”, International Journal of Mathematical Archive, vol. 6, no. 1, 2014, pp. 162-168.
[9] S. Sekar and K. Prabhavathi, “Numerical Strategies for the nth –order fuzzy differential equations by Leapfrog Method”, International Journal of Mathematical Archive, vol. 6, no. 1, 2014, pp. 162-168.
[10] S. Sekar and K. Prabhavathi, “Numerical aspects of Fuzzy Differential Inclusions using Leapfrog Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, 2015, pp. 52-55.
[11] S. Sekar and K. Prabhavathi, “Numerical treatment for the Nonlinear Fuzzy Differential Equations using Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 26, no. 1, October 2015, pp. 35-39.
[12] S. Sekar and K. Prabhavathi, “Numerical investigation of the hybrid fuzzy differential equations using Leapfrog Method”, International Journal of Pure and Applied Mathematics, vol. 103, no. 3, 2015, pp. 385-394.
[13] S. Sekar and M. Vijayarakavan, “Numerical Investigation of first order linear Singular Systems using Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 12, no. 2, 2014, pp. 89-93.
[14] S. Sekar and M. Vijayarakavan, “Numerical Solution of Stiff Delay and Singular Delay Systems using Leapfrog Method”, International Journal of Scientific & Engineering Research, vol. 5, no. 12, December-2014, pp. 1250-1253.
[15] S. Sekar and M. Vijayarakavan, “Observer design of Singular Systems (Robot Arm Model) using Leapfrog Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, 2015, pp. 68-71.
[16] S. Sekar and M. Vijayarakavan, “Numerical approach to the CNN Based Hole-Filler Template Design Using Leapfrog Method”, IOSR Journal of Mathematics, vol. 11, issue 2 Ver. V, (Jul-Aug. 2015), pp. 62-67.
[17] S. Sekar and M. Vijayarakavan, “Numerical treatment of Periodic and Oscillatory Problems Using Leapfrog Method”, International Journal of Mathematics Trends and Technology, vol. 26, no. 1, October 2015, pp. 24-28.
[18] S. Sekar and G. Balaji, “Analysis of the differential equations on the sphere using single-term Haar wavelet series”, International Journal of Computer, Mathematical Sciences and Applications, vol. 4, nos.. 3-4, 2010, pp. 387- 393.