Volume 27 | Number 1 | Year 2015 | Article Id. IJMTT-V27P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V27P509

In this paper, authors areinvestigate the general solutions of a new Quartic functional equation and the generalized Hyers-Ulam - Rassias stability of this equation.

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, in Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge, 1989.

[2] M. Bavand - Savadkouhi, M. Eshaghi-Gordji, C. Park, Quadratic – quartic functional equations in RN – spaces, arXiv;0903.1160v1 [math.FA] 6 march 2009.

[3] L. Cadariu, Fixed points in generalized metric space and the stability of a quartic functional equation, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 50(64) (2005), no. 2, 25-34.

[4] I. S. Chang, Y. S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 28392003) 491 – 500.

[5] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76- 86.

[6] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation,Bull. Korean Math. Soc. 40 (2003), no. 4, 565-576.

[7] M. Eshaghi-Gordji, A. Ebadian, and S. Zolfaghari, Stability of a functional equationderiving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008),Article ID 801904, 17 pages.

[8] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431 - 434.

[9] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431 - 436.

[10] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations,Publ. Math. Debrecen 48 (1996), no. 3-4, 217 - 235.

[11] M. E. Gordji, Stsbility of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. 47 (2010), No. 3, pp. 491 – 502.

[12] M.E. Gordji, S.K. Gharetapeh, Ch. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Adv. in Difference Equations, 2009, Art. 395693 (2009), 20 pages.

[13] M.E. Gordji, M.B. Savadkouhi, Stability of a mixed type additive, quadratic and cubic functional equation in random normed spaces, Filomat 25(3) (2011), 43-54.

[14] M.E. Gordji, S. Zolfaghri, J.M. Rassias and M.B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in Quasi - Banach spaces, Abstract and Appl. Anal., 2009, Art. 417473, (2009), 14 pages.

[15] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in SeveralVariables, Birkhauser Boston, Inc., Boston, MA, 1998.

[16] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222- 224.

[17] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of -additive mappings, J.Approx. Theory 72 (1993), no. 2, 131 - 137.

[18] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995) 368 – 372.

[19] S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal.Appl. 307 (2005), no. 2, 387 - 394.

[20] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), no. 1, 569-574.

[21] A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Turk. J. Math. 31 (2007), 395-408.

[22] C. G. Park, On the stability of the orthogonally quartic functional equation, Bull. IranianMath. Soc. 31 (2005), no. 1, 63 - 70.

[23] W. G. Park and J. H. Bae, On a bi-quadratic functional equation and its stability,Nonlinear Anal. 62 (2005), no. 4, 643 - 654.

[24] Ch. Park, S.W. JO and D.Y. Kho, On the stability of an AQCQ-Functional Equation, J. Chungcheong Math. Soc., 22(4) (2009), 757-770.

[25] Ch. Park, Fuzzy stability of an Additive-Quadratic-Quartic functional equation, J. Inequ. Appl., 2010 (2010), Art. ID 253040, 22 pp.

[26] K. Ravi, J.M. Rassias and P. Narasimman, Stability of a cubic functional equation in fuzzy normed space, J. Appl. Anal. Comp., 1(3) (2011), 411-425.

[27] K. Ravi, B.V. Senthil kumar and S. Kandasamy, Solution and stability of a mixed type quadratic and additive functional equation in two variables, Int. J. Math. Comp., 13(D11) (2011), 51-68.

[28] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. IndianMath. Soc. (N.S.) 67 (2000), no. 1-4, 169 – 178.

[29] Th. M. Rassias, Functional Equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.

[30] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297 – 284.

[31] K. Ravi and M. Arunkumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math. 34 (2007), no. 2, 247 - 260.

[32] K. Ravi and A. Ponmanaselvan, On A Composite Functional Equation Related to Abelian Groups, IJMTT, Vol. 17, January 2015.

[33] E. Thandapani, K. Ravi, and M. Arunkumar, On the solution of the generalized quarticfunctional equation, Far East J. Appl. Math. 24 (2006), no. 3, 297 - 312.

[34] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons,Inc., New York 1964.

A. Ponmanaselvan, J. Kappiyagi Edwin, S. Anishbal, "General Solution and Stability of a Quartic Functional Equation," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 27, no. 1, pp. 41-54, 2015. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V27P509