Volume 28 | Number 1 | Year 2015 | Article Id. IJMTT-V28P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V28P505
Dr.M.Sreedhar Babu, M.Lavanya, G.Venkata Ramanaiah, "Effect of Heat Generation/Absorption on Heat and Mass Transfer in A Micropolar Fluid Over A Stretching Sheet with Newtonian Heating and Chemical Reaction," International Journal of Mathematics Trends and Technology (IJMTT), vol. 28, no. 1, pp. 19-27, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V28P505
[1] Eringen, A.C., (1964), Simple micropolar fluids, Int J Eng Sci., Vol.2, pp.205–207.
[2] Eringen, A.C., (1966), Theory of micropolar fluids, J Math Mech., Vol.16, pp.1-18.
[3] .Eringen, A.C., (2001), Microcontinuum field theories II, Fluent Media. Springer, Newyork.
[4] Lukaszewicz, G., (1999), Micropolar fluids: Theory and applications, Brikhauser Basel.
[5] Peddieson, J., McNitt, R.P., (1970), Boundary layer theory for micropolar fluid, Recent Adv Eng Sci., Vol.5, pp.405-426.
[6] Willson, A.J., (1970), Boundary layers in micropolar liquids, Proc. Camb Phil Soc., Vol.67, pp.469-476.
[7] Siddheshwar, P.G., Manjunath, S., (2000), Unsteady convective diffusion with heterogeneous chemical reaction in a plane-Poiseuille flow of a micropolar fluid, Int J Eng Sci., Vol.38, pp.765-783.
[8] Merkin, J.H., (1999), Natural-convection boundary-layer flow on a vertical surface with Newtonian heating, Int. J. Heat. Fluid Flow, Vol.15, pp.392-398.
[9] Lesnic, D., Ingham, D.B., Pop, I., (1999), Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating, Int. J. Heat Mass Transf., Vol.42, pp.2621-2627.
[10] Chaudhary, R.C., Jain, P., (2007), An exact solution to the unsteady free convection boundary layer flow past an impulsive started vertical surface with Newtonian heating, J. Eng. Phys., Vol.80, pp.954-960. Salleh, M.Z., Nazar, R., Pop, I., (2010), Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating, J
[11]Taiwan Inst Chem Eng., Vol.41, pp.651-655.
[12] Qasim, M., Khan, I., Shafie, S., (2013), Heat Transfer in a Micropolar Fluid over a Stretching Sheet with Newtonian Heating, PLoS ONE, Vol.8(4): e59393. doi:10.1371/journal.pone.0059393, pp.1-6.
[13] Capretto, L., Cheng, W., Hill, M., Zhang, X., (2011), Micromixing within microfluidic devices, Top Curr Chem, Vol.304, pp.27-68.
[14] Kleinstreuer, C., Li, J., Koo, J., (2008), Microfluidics of nano-drug delivery, Int J Heat Mass Transf., Vol.51, pp.5590- 5597.
[15] Pal, D., Mondal, H., (2009), Influence of temperaturedependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge, Appl Math and Compu., Vol.212, pp.194-208.
[16] Herdricha, G., Auweter-Kurtza, M., Fertiga, M., Nawaza, A., Petkowa, D., (2006), MHD flow control for plasma technology applications, Vacuum, Vol.80, pp.1167-1173.
[17] Seddeek, M.A., Afify, A.A., Hanaya, M.A., (2009), Similarity solutions for steady MHD Falkner-Skan Flow and heat transfer over a wedge by considering the effect of variable viscosity and thermal conductivity, Appl and Appl Math., Vol.4, pp.301-313.
[18] Alam, M.S., Rahman, M.M., Sattar, M.A., (2008), Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation, Int J of Therm Sci., Vol.47, pp.758-765.
[19] Rahman, M.M., Salahuddin, K.M., (2010), Study of hydromagnetic heat and mass transfer flow over an inclined heated surface with variable viscosity and electric conductivity, Commun Nonlinear Sci Numer Simul., Vol.15, pp.2073-2085.
[20] Hendi, A.F., Hussain, M., (2012), Analytic Solution for MHD Falkner-Skan flow over a porous surface, J of Appl Math., Article ID 123185, pp.1-9.
[21] Uddin, M.J., Khan, W.A., Ismail, A.I., (2012), MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition, PLoS ONE, Vol.7(11): e49499. doi:10.1371/journal.pone.0049499, pp.1-8.
[22] Uddin, M.J., Khan, W.A., Ismail, A.I.M., (2013), MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect, PLoS ONE, Vol.8(5): e62664. doi:10.1371/journal.pone.0062664,pp.1-10.
[23] Srinivasacharya, D., and Upendar, M., (2013), Free convection in mhd micropolar fluid with soret and dufour effects, Int. J. of Appl. Math and Mech., Vol. 9 (5), pp.92-112.
[24] Singh, G., Sharma, P.R., and Chamkha, A.J., (2010), Effect of Volumetric Heat Generation/Absorption on Mixed Convection Stagnation Point Flow on an Isothermal Vertical Plate in Porous Media, Int. J. Industrial Mathematics, Vol.2(2), pp.59-71.
[25] Das, S.S., Satapathy, A., Das, J.K., and Panda, J.P., (2009), Mass transfer effects on MHD flow and heat transfer past a vertical porous plate through a porous medium under oscillatory suction and heat source, Int. J. Heat Mass Transfer, Vol.52, pp.5962-5969.
[26] Pal, and Talukdar, B., (2010), Perturbation analysis of unsteady magnetohydrodynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction, Commun. Nonlin. Sci. Numer. Simul., Vol.15, pp.1813-1830.
[27] Ibrahim, F.S., Hassanien, I.A., Bakr, A.A., (2004), unsteady magnetohydrodynamic micropolar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source, Can.J.Phys., Vol.82, pp.775-790.
[28] Rahman, M.M., Sattar, M.A., Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving porous plate in the presence of heat generation/absorption, ASME.J. Heat transfer, Vol128, pp.142-153.
[29] Rajagopal, K. R., Giuseppe Saccomandi, Vergori, L., (2011), Linear stability of Hagen-Poiseuille flow in a chemically reacting fluid, Computers & Mathematics with Applications Vol.61(2), pp.460- 469.
[30] Das, K., (2011), Effects of chemical reaction and thermal reaction on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference, International journal of heat and mass transfer, Vol.54, pp.3505-3513.
[31] Shampine, L. F. and Kierzenka, J. (2000), “Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c,” Tutorial Notes.