Volume 28 | Number 1 | Year 2015 | Article Id. IJMTT-V28P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V28P505
The steady, two dimensional flow of an incompressible, electrically conducting and chemically reacting micropolar fluid over a stretching sheet with Newtonian heating in the presence of MHD, Heat source/sink, mass transfer and chemical reaction. Using the similarity transformations, the governing equations have been transformed into a system of ordinary differential equations. The similarity ordinary differential equations were then solved by MATLAB routine bvp4c. Numerical results are obtained for the skin-friction coefficient, the couple wall stress, the local Nusselt number and Sherwood number as well as the velocity, microrotation, temperature and concentration profiles for different values of the governing parameters, namely, material parameter, magnetic parameter, heat source/sink parameter and chemical reaction parameter.
[1] Eringen, A.C., (1964), Simple micropolar fluids, Int J Eng Sci., Vol.2, pp.205–207.
[2] Eringen, A.C., (1966), Theory of micropolar fluids, J Math Mech., Vol.16, pp.1-18.
[3] .Eringen, A.C., (2001), Microcontinuum field theories II, Fluent Media. Springer, Newyork.
[4] Lukaszewicz, G., (1999), Micropolar fluids: Theory and applications, Brikhauser Basel.
[5] Peddieson, J., McNitt, R.P., (1970), Boundary layer theory for micropolar fluid, Recent Adv Eng Sci., Vol.5, pp.405-426.
[6] Willson, A.J., (1970), Boundary layers in micropolar liquids, Proc. Camb Phil Soc., Vol.67, pp.469-476.
[7] Siddheshwar, P.G., Manjunath, S., (2000), Unsteady convective diffusion with heterogeneous chemical reaction in a plane-Poiseuille flow of a micropolar fluid, Int J Eng Sci., Vol.38, pp.765-783.
[8] Merkin, J.H., (1999), Natural-convection boundary-layer flow on a vertical surface with Newtonian heating, Int. J. Heat. Fluid Flow, Vol.15, pp.392-398.
[9] Lesnic, D., Ingham, D.B., Pop, I., (1999), Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating, Int. J. Heat Mass Transf., Vol.42, pp.2621-2627.
[10] Chaudhary, R.C., Jain, P., (2007), An exact solution to the unsteady free convection boundary layer flow past an impulsive started vertical surface with Newtonian heating, J. Eng. Phys., Vol.80, pp.954-960. Salleh, M.Z., Nazar, R., Pop, I., (2010), Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating, J
[11]Taiwan Inst Chem Eng., Vol.41, pp.651-655.
[12] Qasim, M., Khan, I., Shafie, S., (2013), Heat Transfer in a Micropolar Fluid over a Stretching Sheet with Newtonian Heating, PLoS ONE, Vol.8(4): e59393. doi:10.1371/journal.pone.0059393, pp.1-6.
[13] Capretto, L., Cheng, W., Hill, M., Zhang, X., (2011), Micromixing within microfluidic devices, Top Curr Chem, Vol.304, pp.27-68.
[14] Kleinstreuer, C., Li, J., Koo, J., (2008), Microfluidics of nano-drug delivery, Int J Heat Mass Transf., Vol.51, pp.5590- 5597.
[15] Pal, D., Mondal, H., (2009), Influence of temperaturedependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge, Appl Math and Compu., Vol.212, pp.194-208.
[16] Herdricha, G., Auweter-Kurtza, M., Fertiga, M., Nawaza, A., Petkowa, D., (2006), MHD flow control for plasma technology applications, Vacuum, Vol.80, pp.1167-1173.
[17] Seddeek, M.A., Afify, A.A., Hanaya, M.A., (2009), Similarity solutions for steady MHD Falkner-Skan Flow and heat transfer over a wedge by considering the effect of variable viscosity and thermal conductivity, Appl and Appl Math., Vol.4, pp.301-313.
[18] Alam, M.S., Rahman, M.M., Sattar, M.A., (2008), Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation, Int J of Therm Sci., Vol.47, pp.758-765.
[19] Rahman, M.M., Salahuddin, K.M., (2010), Study of hydromagnetic heat and mass transfer flow over an inclined heated surface with variable viscosity and electric conductivity, Commun Nonlinear Sci Numer Simul., Vol.15, pp.2073-2085.
[20] Hendi, A.F., Hussain, M., (2012), Analytic Solution for MHD Falkner-Skan flow over a porous surface, J of Appl Math., Article ID 123185, pp.1-9.
[21] Uddin, M.J., Khan, W.A., Ismail, A.I., (2012), MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition, PLoS ONE, Vol.7(11): e49499. doi:10.1371/journal.pone.0049499, pp.1-8.
[22] Uddin, M.J., Khan, W.A., Ismail, A.I.M., (2013), MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect, PLoS ONE, Vol.8(5): e62664. doi:10.1371/journal.pone.0062664,pp.1-10.
[23] Srinivasacharya, D., and Upendar, M., (2013), Free convection in mhd micropolar fluid with soret and dufour effects, Int. J. of Appl. Math and Mech., Vol. 9 (5), pp.92-112.
[24] Singh, G., Sharma, P.R., and Chamkha, A.J., (2010), Effect of Volumetric Heat Generation/Absorption on Mixed Convection Stagnation Point Flow on an Isothermal Vertical Plate in Porous Media, Int. J. Industrial Mathematics, Vol.2(2), pp.59-71.
[25] Das, S.S., Satapathy, A., Das, J.K., and Panda, J.P., (2009), Mass transfer effects on MHD flow and heat transfer past a vertical porous plate through a porous medium under oscillatory suction and heat source, Int. J. Heat Mass Transfer, Vol.52, pp.5962-5969.
[26] Pal, and Talukdar, B., (2010), Perturbation analysis of unsteady magnetohydrodynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction, Commun. Nonlin. Sci. Numer. Simul., Vol.15, pp.1813-1830.
[27] Ibrahim, F.S., Hassanien, I.A., Bakr, A.A., (2004), unsteady magnetohydrodynamic micropolar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source, Can.J.Phys., Vol.82, pp.775-790.
[28] Rahman, M.M., Sattar, M.A., Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving porous plate in the presence of heat generation/absorption, ASME.J. Heat transfer, Vol128, pp.142-153.
[29] Rajagopal, K. R., Giuseppe Saccomandi, Vergori, L., (2011), Linear stability of Hagen-Poiseuille flow in a chemically reacting fluid, Computers & Mathematics with Applications Vol.61(2), pp.460- 469.
[30] Das, K., (2011), Effects of chemical reaction and thermal reaction on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference, International journal of heat and mass transfer, Vol.54, pp.3505-3513.
[31] Shampine, L. F. and Kierzenka, J. (2000), “Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c,” Tutorial Notes.
Dr.M.Sreedhar Babu, M.Lavanya, G.Venkata Ramanaiah, "Effect of Heat Generation/Absorption on Heat and Mass Transfer in A Micropolar Fluid Over A Stretching Sheet with Newtonian Heating and Chemical Reaction," International Journal of Mathematics Trends and Technology (IJMTT), vol. 28, no. 1, pp. 19-27, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V28P505