Volume 28 | Number 1 | Year 2015 | Article Id. IJMTT-V28P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V28P510
Y.Rajashekhar Reddy, "Numerical solution to fifth order linear differential equation using sixth degree B-spline collocation method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 28, no. 1, pp. 61-65, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V28P510
1. I. J. SCHOENBERG, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45-99; 112-141.
2. H. B. CURRY AND I. J. SCHOENBERG, On spline distributions and their limits: the Polya distributions, Abstr. Bull. Amer. Math. Sot. 53 (1947), 1114.
3. J.H.Ahlberg, E.N.Nielson and J.L.Walsh, TheTheory of Splines and Their Applications, Academic Press, New York.1967.
4. C. de Boor, A Practical Guide to Splines, Springer. 1978. 5. K.H¨ollig, Finite Element Methods with B-Splines, The SIAM series on Frontiers in Applied Mathematics. 2003.
6. B-Spline Finite Elements. Computer Methods in Applied Mechanics and Engineering, 100, 325- 337.http://dx.doi.org/10.1016/0045-7825(92)90088-2
7. Aziz, T., Khan, A. and Rashidinia, J. (2005) Spline Methods for the Solution of Fourth-Order Parabolic Partial Differential Equations. Applied Mathematics and Computation, 167, 153-166. http://dx.doi.org/10.1016/j.amc.2004.06.095
8. Caglar, N. and Caglar, H. (2006) B-Spline Solution of Singular Boundary Value Problems. Applied Mathematics and Computation, 182, 1509-1513. http://dx.doi.org/10.1016/j.amc.2006.05.035
9. Caglar, H., Ozer, M. and Caglar, N. (2008) The Numerical Solution of the One-Dimensional Heat Equation by Using Third Degree B-Spline Functions. Chaos, Solitons & Fractals, 38, 1197- 1201.http://dx.doi.org/10.1016/j.chaos.2007.01.056
10. Fazal-i-Haq, Siraj-ul-Islam and Tirmizi, I.A. (2010) A Numerical Technique for Solution of the MRLW Equation Using Quartic B-Splines. Applied Mathematical Modelling, 34, 4151- 4160. http://dx.doi.org/10.1016/j.apm.2010.04.012
11. Lakestani, M. and Dehghan, M. (2012) Numerical Solutions of the Generalized Kuramoto-Sivashinsky Equation Using B-Spline Functions. Applied Mathematical Modelling, 36, 605-617. http://dx.doi.org/10.1016/j.apm.2011.07.028
12. Mittal, R.C. and Jain, R.K. (2011) B-Splines Methods with Redefined Basis Functions for Solving Fourth Order Parabolic Partial Differential Equations. Applied Mathematics and Computation, 217, 9741-9755. http://dx.doi.org/10.1016/j.amc.2011.04.061
13. Y.Rajashekhar Reddy.(2015) Solutions To Differential Equation Using B-Spline Based Collocation Method. International Journal of Scientific Research and Engineering Studies (IJSRES) Volume 2 Issue 4, April 2015 ISSN: 2349-8862.