Volume 29 | Number 1 | Year 2016 | Article Id. IJMTT-V29P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V29P505
In the present paper, we deal with one of the special Finsler space such that quasi- -reducible space and find out the un-normal and normal Ricci flow equations on quasi-C-reducible space with metric.
[1] H. Akbar-Zadeh, Generalized Einstein manifolds, J. Geom. Phys., 17 (1995), 342-380.
[2] A. H. M. Hamza and H. A. Hussein, Construction new type of matrices, IJMTT, 24(2), (2015).
[3] D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, Advanced Studies in Pure Mathematics, (2007).
[4] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255-306.
[5] Henri Poincare, Cinquieme complement ‘a lanalysis situs. In OEuvres. Tome VI, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics] pages v+541, Editions Jacques Gabay, Sceaux, Reprint of the 1953 edition, (1996).
[6] S. K. Narasimhamurthy, D.M. Vasantha, Ricci flow equation on special Finsler space, Journal of Tensor Soc., 8 (2014) 121-130.
[7] Narasimhamurthy, S.K. and Vasantha, D.M., Projective change between two Finsler spaces with - metric, KYUNGPOOK Math. J., 52 (1) (2012), 81–89.
[8] Nagesh S, G, Nanjundan, Suresh P, S. Pasha, A characterization of zero-inflated geometric model, IJMTT, 23(1), (2015).
[9] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/ 0211159.
[10] G. Perelman, Ricci flow with surgery on three manifolds, arXiv: math.DG/ 03109.
[11] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three manifolds, arXiv: math.DG/ 0307245.
[12] Prasad, B.N., Gupta, B.N. and Singh, D.D., Conformal transformation in Finsler spaces with - metric, Indian J. Pure and Appl. Math., 18 (4) (1961), 290–301.
[13] A. Thayebi, E. Peyghan and B. Najafi, Ricci flow equation on - metrics, arXiv:1108.0134v1.
[14] S. Vacaru, Nonholonomic Ricci flows: II. evolution equations and dynamics, J. Math. Phys., 49 (2008), 043504.
[15] S. Vacaru, Nonholonomic Ricci flows, exact solutions in gravity, and Symmetric and Non-symmetric Metrics, Int. J. Theor. Phys., 48 (2009), 579-606.
[16] S. Vacaru, The Entropy of Lagrange-Finsler spaces and Ricci flows, Rep. Math. Phys., 63 (2009), 95-110.
[17] S. Vacaru, Spectral functionals, nonholonomic Dirac operators, and non commutative Ricci flows, J. Math. Phys., 50 (2009).
S.K. Narasimhamurthy, B.C. Chethana , D.M Vasantha, "Ricci Flow Equations on Qusi-C-Reducible Finsler Space," International Journal of Mathematics Trends and Technology (IJMTT), vol. 29, no. 1, pp. 28-32, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V29P505