Volume 29 | Number 1 | Year 2016 | Article Id. IJMTT-V29P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V29P508
In this paper uniform upper and lower continuous function f M on manifolds spaces with curvature bounds on M as surfaces and applications compact Riemannian boundary f , f 1 M R is complete with Riemannian and we prove is integration on differential on R
[1] Osman.Mohamed M, Basic integration on smooth manifolds and application maps with stokes theorem ,http//www.ijsrp.org-6-januarly2016.
[2] Osman.Mohamed M, fundamental metric tensor fields on Riemannian geometry with application to tangent and cotangent ,http//www.ijsrp.org- 6januarly2016.
[3] Osman.Mohamed M, operate theory Riemannian differentiable manifolds ,http//www.ijsrp.org- 6januarly2016.
[4] J.Glover,Z,pop-stojanovic, M.Rao, H.sikic, R.song and Z.vondracek, Harmonic functions of subordinate killed Brownian motion,Journal of functional analysis 215(2004)399-426.
[5] M.Dimitri, P.Patrizia , Maximum principles for inhomogeneous Ellipti inequalities on complete Riemannian Manifolds , Univ. degli studi di Perugia,Via vanvitelli 1,06129 perugia,Italy e-mails : Mugnai@unipg,it , 24July2008.
[6] Noel.J.Hicks . Differential Geometry , Van Nostrand Reinhold Company450 west by Van N.Y10001.
[7] L.Jin,L.Zhiqin , Bounds of Eigenvalues on Riemannian Manifolds, Higher eduationpress and international press Beijing-Boston ,ALM10,pp. 241-264.
[8] S.Robert. Strichaiz, Analysis of the laplacian on the complete Riemannian manifolds. Journal of functional analysis52,48,79(1983).
[9] P.Hariujulehto.P.Hasto, V.Latvala, O.Toivanen , The strong minmum principle for quasisuperminimizers of non-standard growth, preprint submitted to Elsevier , june 16,2011.- Gomez,F,Rniz del potal 2004 .
[10] Cristian , D.Paual, The Classial Maximum principles some of ITS Extensions and Applicationd , Series on Math.and it Applications , Number 2-2011.
[11] H.Amann ,Maximum principles and principlal Eigenvalues , J.Ferrera .J.Lopez
[12] J.Ansgar staudingerweg 9.55099 mainz, Germany email: juengel@mathematik.uni-mainz.de ,U.Andreas institute fiir mathematic,MA6-3,TU Berlin strabe des 17.juni. 136,10623 Berlin ,Germany, e-mail: unterreiter@math.tuberlin..
[13] R.J.Duffin,The maximum principle and Biharmoni functions, journal of math. Analysis and applications 3.399-405(1961).
Mohamed M. Osman, "Differentiable Riemannian Geometry," International Journal of Mathematics Trends and Technology (IJMTT), vol. 29, no. 1, pp. 45-55, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V29P508