Volume 29 | Number 2 | Year 2016 | Article Id. IJMTT-V29P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V29P516
The focus of this paper is to study the special properties of the rough sets which can be constructed by means of the congruences determined by filters of residuated lattice. Also the properties of the generalized rough sets with respect to filters of residuated lattice are investigated.
1. H.M. Abu-Donia, Comparison between different kinds of approximations by using a family of binary relations, Knowl. Based Syst. 21 (2008), 911–919.
2. H.M. Abu-Donia, A.S. Salama, β-approximation spaces, J. Hybrid Comput. Res.1(2), (2008).
3. H.M. Abu-Donia, A.A. Nasef, E.A. Marei, Finite information systems, Appl. Math. Inform. Sci. 1 (1) (2007), 13–21.
4. M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Uni. 12 (1) (1983), 77–90.
5. D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
6. H.M. Abu-Donia, A.S. Salama / International Journal of Approximate Reasoning 53 (2012), 1094–1105.
7. S. Calegari, D. Ciucci, Granular computing applied to ontologies, Int. J. Approx. Reason. 51 (2010), 391–409.
8. M. Chuchro, On rough sets in topological Boolean algebras, Rough sets and Knowledge Discovery Baff AB (1993), 157–160.
9. D. Ciucci, Tommaso Flaminio, Generalized rough approximations in Ł, Int. J. Approx. Reason. 48 (2008), 544–558.
10. B.Davvaz, A short note on algebraic T-rough sets, Inf.Sci.178(2008), 3247-3252
11. M. Diker, Definability and textures, Int. J. Approx. Reason. 53 (2012), 558–572.
12. N.E. El-Tayar, R.S. Tsai, P.A. Carruptand, B. Testa, J. Chem. Soc. Perkin Trans. 2 (1992), 79–84.
13. E. Hatir, T. Noiri, Decompositions of continuity and complete continuity, Acta Math. Hungary 11 (3) (2006), 281–287.
14. E. Hatir, T. Noiri, On δβ-continuous functions, Chaos, Solitons Fractals 42(2009), 205–211.
15. K.Y. Huang, Ting-Hua Chang, Ting-Cheng Chang, Determination of the threshold value β of variable precision rough set by fuzzy algorithms, Int. J. Approx.Reason. 52 (7) (2011) ,1056–1072.
16. J. James, Alpigini, F. James, peters, Andrzej skowron and Ning zhong, Rough set elements, Rough sets and Current trends in compuring, 5th Int. conf.Malvern, PA, USA, Proc. Springer (2002), 12-16.
17. J. Kelley, General Topology, Van Nostrand Company, 1955.
18. M. Kryszkiewicz, Rough set approach to incomplete information systems, Inform. Sci. 112 (1998), 39–49.
19. N. Levine, Semi open sets and semi continuity topological spaces, Amer. Math. Monthly 70 (1963), 24–32.
20. X. Li, S. Liu, Matroidal approaches to rough sets via closure operators, Int. J. Approx. Reason. 53 (2012), 513–527.
21. G. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Int. J. Approx. Reason. 50 (2009), 521–528.
22. A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On pre-continuous and week pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
23. A. Mousavi, P.J. Maralani, Relative sets and rough sets, Int. J. Appl. Math. Comput. Sci. 11 (3) (2001), 637–654.
24. L. Ma, On some types of neighborhood-related covering rough sets, Int. J. Approx. Reason. (2012).
25. O. Njasted, On some classes of nearly open sets, Pro. J. Math. 15 (1965) 961–970.
26. M. Novotny, Z. Pawlak, Characterization of rough top equalities and rough bottom equalities, Bull. Polish. Acad. of Sci., Math. 33 (1985), 92–97.
27. M. Novotny, Z. Pawlak, On rough equalities, Bull. Polish. Acad. Sci. Math. 33 (1985), 99–104.
28. Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. (11) (1982), 341–356.
29. Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic, Boston, 1991.
30. Z. Pei, D. Pei, Li Zheng, Topology vs generalized rough sets, Int. J. Approx. Reason. 52 (2) (2011) 231–239.
31. D. Pei, A generalized model of fuzzy rough sets, International Journal of General Systems, 34(5) (2005), 603-613.
32. D. Pei and Z. Xu, Rough set models on two universes, International Journal of GeneralSystems, 33(5) (2004), 569-581.
33. D. Pei, A generalized model of fuzzy rough sets, International Journal of General Systems, 34(5) (2005), 603-613.
34. Y.H. Qian, J.Y. Liang, Y.Y. Yao, C.Y. Dang, MGRS: A multi-granulation rough set, Inform. Sci. 180 (2010), 949–970.
35. K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci. 178 (2008), 4138–4141.
36. A.S. Salama, Topological solution of missing attribute values problem in incomplete information tables, Inform. Sci. 180 (2010), 631– 639.
37. Y. Shen, FaxingWang, Rough approximations of vague sets in fuzzy approximation space, Int. J. Approx. Reason. 52 (2) (2011), 281–296.
38. A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fund. Inform. 27 (1996), 245–253.
39. R. Slowinski, D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE Trans. Knowledge Data Eng. 12 (2000), 331–336.
40. M.H. Stone, Applications of the theory of Boolean rings to general topology, TAMS 41 (1937), 375–810.
41. M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 36 (2) (1939), 406-437.
42. B.Walczak, D.L. Massart, Tutorial Rough sets theory, Chemometr. Intell. Lab. Syst. 47 (1999), 1–16.
43. A. Wiweger, On topological rough sets, Bull. Pol. Acad. Math. 37 (1989), 89–93.
44. U.Wybraniec-Skardowska, On a generalization of approximation space, Bull. Pol. Acad. Sci. 37 (1989), 51–61.
45. Q.Xiao, Q.Li, The generalized roughness in lattices in : C.Z.Wang (Eds.,) The 3rd International Workshop on Intelligent Systems and Applications, 1(2011), 155-158.
46. S. Yamak, Kazanci, B.Davvaz, Generalized lower and upper approximations in a ring, Inf. Sci. 180(2010), 1759-1768.
47. S. Yamak, Kazanci, B.Davvaz, Generalized lower and upper approximations in a ring, Inf. Sci. 180(2010), 1759-1768.
48. Y.Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci. 180 (3) (2010), 341–353.
49. Y.Y. Yao, T.Y. Lin, Generalization of rough sets using modal logic, Intell. Automat. Soft Comput. 2 (1996), 103–120.
50. Y.Y. Yao, Two views of the theory of rough sets in finite Universes, Int. J. Approx. Reason. (15) (1997), 291–317.
51. Y.Y. Yao, Generalized rough set models, Rough Sets in Knowledge Discovery, physica-verlag, Hidelberg, (1998), 286–318.
52. W. Zhu, Topological approaches to covering rough sets, Inform. Sci.177 (2007), 1499–1508.
53. H.P. Zhang, Y. Ouyang, Z.Wangc, Note on Generalized rough sets based on reflexive and transitive relations, Inform. Sci. 179 (2009), 471–473.
54. W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Inform. Sci. 179 (2009), 210–225.
55. W. Zhu, Generalized rough sets based on relations, Inform. Sci. 177 (2007), 4997–5011.
K.Reena, I. Arockiarani, "Generalized Rough sets induced by filters in residuated lattices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 29, no. 2, pp. 105-112, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V29P516