Volume 30 | Number 2 | Year 2016 | Article Id. IJMTT-V30P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P512
The propagation of a cylindrical shock wave in an ideal gas with exponentially increasing density. The shock wave is driven out by a piston moving with time according to power law. The solution is applicable for any arbitrary ratio of specific heats and valid even for large time.
[1] Hardy J. W. and Grover R Astrphys J 143 (1966) 48.
[2] Hayes W. D. J. fluid Mech. 32 (1968) 305.
[3] Sakurai A. Comm. Pure Applied Mathematics 13 (1960) 353.
[4] Ojha S. N. Actaciencia Indica 2(1)(1976)86.
[5] Ray G. Deb Proc. Nat. Inst. Science India 35(1967)86.
[6] Wang K. C. Physics fluid 9(1966)1922.
[7] Witham G. B. J. fluid Mech. 4(1958)337.
[8] Sedov L. I. Similarity and dimensional method in mechanics, Academic press, New York (1959).
[9] Carrus AP. J. (1951), 113(3), 496 – 518.
[10] Elliott L. A. 1960, similarity method in radiation hydrodynamics Proc R. Soc. Land A, 258(3) 287 – 301.
[11]Marshak R. E. 1958, Effect of radiation on shock wave behavior, Phys, Fluids, 1(1), 24 – 29.
[12] J. P. Vishwakarma and Arvind K. Singh, J. Astrophys. Astr. (2009)30, 53 – 69.
[13] J. P. Vishwakarma and Mahendra Singh, Applied Mathematics (2012), 2(1): 01 – 07.
[14] G. Nath and A. K. Sinha (2011), Phys. Research International
Seema Singh, "Numerical Simulation of Cylindrical Shock Wave in inhomogeneous medium," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 2, pp. 65-67, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P512