Volume 30 | Number 2 | Year 2016 | Article Id. IJMTT-V30P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P512
Seema Singh, "Numerical Simulation of Cylindrical Shock Wave in inhomogeneous medium," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 2, pp. 65-67, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P512
The propagation of a cylindrical shock wave in an ideal gas with exponentially increasing density. The shock wave is driven out by a piston moving with time according to power law. The solution is applicable for any arbitrary ratio of specific heats and valid even for large time.
[1] Hardy J. W. and Grover R Astrphys J 143 (1966) 48.
[2] Hayes W. D. J. fluid Mech. 32 (1968) 305.
[3] Sakurai A. Comm. Pure Applied Mathematics 13 (1960) 353.
[4] Ojha S. N. Actaciencia Indica 2(1)(1976)86.
[5] Ray G. Deb Proc. Nat. Inst. Science India 35(1967)86.
[6] Wang K. C. Physics fluid 9(1966)1922.
[7] Witham G. B. J. fluid Mech. 4(1958)337.
[8] Sedov L. I. Similarity and dimensional method in mechanics, Academic press, New York (1959).
[9] Carrus AP. J. (1951), 113(3), 496 – 518.
[10] Elliott L. A. 1960, similarity method in radiation hydrodynamics Proc R. Soc. Land A, 258(3) 287 – 301.
[11]Marshak R. E. 1958, Effect of radiation on shock wave behavior, Phys, Fluids, 1(1), 24 – 29.
[12] J. P. Vishwakarma and Arvind K. Singh, J. Astrophys. Astr. (2009)30, 53 – 69.
[13] J. P. Vishwakarma and Mahendra Singh, Applied Mathematics (2012), 2(1): 01 – 07.
[14] G. Nath and A. K. Sinha (2011), Phys. Research International