Volume 30 | Number 2 | Year 2016 | Article Id. IJMTT-V30P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P515
Let R be a commutative ring with identity and M be an R-module. In this paper we introduce Pure Rickart modules and Pure -Rickart modules as a generalization of Rickart modules and -Rickart modules respectively. Also, Pure Rickart modules and Pure -Rickart modules can be viewed as a generalization of PF-rings and GPF-rings respectively.
[1] B. H. AL-Baharaany,Modules with the Pure Intersection Property, Ph.D. Thesis, University of Baghdad, 2000.
[2] H.Al-Ezeh,Ongeneralized PF-rings, Math.J.Okayama University,31(1989), 25-29.
[3] S. AL-Saadi and T. Arif,PurelyRickart module, International J. of Algebra,.8,18 (2014), 873– 881.
[4] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlage, New York, 1992.
[5] P. M. Cohn, On The Free Product of Associative Rings, I, Math. Z. 71(1959), 380-398.
[6] D.J.Fieldhous, Pure Simple and Indecomposable Rings, Can. Math.Bwll., 13(1970) 71-78.
[7] Hattori, A Foundation of Torsion Theory for Modules Over General Rings, Nagoya Math. J. 17(1960), 891- 895.
[8] Y.Hirano, On generalized PP-rings, Math.J.Okayama University, 25(1973),7-11.
[9] G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38 (2010),4005-4027.
[10] A.S.Mijbass, Quasi-Dedekind Modules, Ph.D. Thesis, University of Baghdad, (1997).
[11] B. Ungor, S. Halicioglu, and A. Harmanci, A Generalization of Rickart Modules, Colombiana de Matematicas (2012).
[12] S.M.Yaseen, F-Regular Modules, M.Sc. Thesis, University of Baghdad, (1993).
[13] L. Zhongkui and Z. Renyu, A generalization of PP rings and p.q.Baerrings, Glasgow Math. 48 (2006), 217 - 229.
Ghaleb Ahmed, "Pure Rick art Modules and Their Generalization," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 2, pp. 82-91, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P515