Volume 30 | Number 2 | Year 2016 | Article Id. IJMTT-V30P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P516
Let G be a (p, q) graph and f:V(G)→{1,2,…p+q} be an injective function.
[1] J.A. Gallian A dynamic survey of graph labeling, The Electronic journal of Combinations, (2013) #DS6.
[2] F. Harary, Graph Theory, Narosa Publication House Reading, New Delhi 1998.
[3] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National academy Science letters, 26(2003), 210-213.
[4] S. Somasundaram and R. Ponraj, Some results on Mean graph, Pure and Applied Mathematics Science, 58(2003), 29-35.
[5] S.S. Sandhya, S. Somasundaram and S. Anusa, Root square mean labeling of graphs, Int. J. Contemp. Math. Sciences, Vol.9, 14(2014), 669-676.
[6] S.S. Sandhya, S. Somasundaram and S. Anusa, Root square mean labeling of Some New Disconnected Graphs, International journal of Mathematics Trends and Technology, Volume 15, 2(2014), 85-92.
[7] K. Thirugnanasambandam and K. Venkatesan, Super root square mean labeling of graphs, International Journal of Mathematics and Soft Computing, Vol.5, No.2.(2015), 189-195.
R. Chitra devi, S. Saravana Kumar, "Super Root Square Mean Labeling of Some Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 2, pp. 92-94, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P516